首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The rational design of nanoparticle (NP)/polymer composites with advanced functional properties is based on controlling the distribution and self-assembly of NPs in the polymer matrix. In this study we report a new one-step strategy to produce the self-assembly of alkanethiol-stabilized Au NPs in one of the phases generated by polymerization-induced phase separation. The polymerization of a formulation composed of stoichiometric amounts of diglycidylether of bisphenol A (DGEBA) and m-xylylenediamine (mXDA), containing polystyrene (PS) and dodecanethiol-stabilized Au NPs as modifiers, produced the phase separation of PS and Au NPs into microdomains dispersed in the epoxy matrix. A subsequent phase separation and self-assembly of Au NPs took place inside the PS domains leading to an increase in their concentration in a region close to the interface as revealed by TEM images. SAXS spectra showed that NPs self-assembled as colloidal crystals with a body-centered cubic (bcc) structure. By an adequate selection of the amount of PS and the nature of the epoxy precursors, different morphologies of the final blend could be generated. This brings the possibility of controlling the dispersion and self-assembly of NPs in the final material.  相似文献   

2.
Thermally reversible light scattering (TRLS) films are prepared from ultraviolet (UV) curing of polyether urethane diacrylate (PEUDA) with dispersed low molecular weight 1-octadecanol (OD). Depending on the temperature, the OD domains are crystalline or amorphous and this produce opaque or transparent films in a reversible way. Stable optically transparent and light scattering states are obtained after 100 successive heating–cooling cycles. Moreover, morphologies of the OD domains could be varied significantly with the cure temperature and this led to notable discrepancy in optical properties. By using an UV-mask and curing in two steps at different temperatures, complex patterns could be recorded in the film that were encoded at high temperatures (60 °C) and revealed at low temperatures (i.e., at room temperature), which makes the film a candidate for thermo-optical recording medium.  相似文献   

3.
A series of novel poly(imide-siloxane)s (PIS) were synthesized by the grafting of amine terminated soluble imides to the siloxane backbone. The amine terminated imides were synthesized by choosing suitable anhydrides and amines to get the imides that are soluble in polar and non-polar solvents. The imides were grafted to the siloxane backbone by the epoxy group cleavage. All the polymers were obtained in quantitative yields with the inherent viscosities ranging from 0.22 to 1.2 dL g−1. The polymers were characterized by FT-IR, 1H and 13C NMR, and were examined for their thermal properties. The polymers were found to be stable up to a temperature 350 °C. The DSC results showed a single glass transition in the negative temperature, whereas the DTA revealed another glass transition in the positive end for some of the polymers showing phase separation. Polymer films were prepared employing the coupling reaction between PIS and the polydimethylsiloxane matrix by varying the amount of incorporation of PIS in the films. The polymer films had a tensile strength of 35-82 MPa with a percentage elongation of 86-271%. The contribution of polar and dispersion component towards the total surface energy was studied by the contact angle measurement and a reduction in surface tension of 14 mN m−1 was achieved with the fluorine containing PIS membrane.  相似文献   

4.
Opal films with their vivid structural colors represent a field of tremendous interest and obtained materials offer the possibility for many applications, such as optical sensors or anti-counterfeiting materials. A convenient method for the generation of opal structures relies on the tailored design of core-interlayer-shell (CIS) particles. Within the present study, elastomeric opal films were combined with stimuli-responsive photoacids to further influence the optical properties of structurally colored materials. Starting from cross-linked polystyrene (PS) core particles featuring a hydroxy-rich and polar soft shell, opal films were prepared by application of the melt-shear organization technique. The photoacid tris(2,2,2-trifluoroethyl) 8-hydroxypyrene-1,3,6-trisulfonate (TFEHTS) could be conveniently incorporated during freeze-drying the particle dispersion and prior to the melt-shear organization. Furthermore, the polar opal matrix featuring hydroxylic moieties enabled excited-state proton transfer (ESPT), which is proved by spectroscopic evaluation. Finally, the influence of the photoacid on the optical properties of the 3-dimensional colloidal crystals were investigated within different experimental conditions. The angle dependence of the emission spectra unambiguously shows the selective suppression of the photoacid’s fluorescence in its deprotonated state.  相似文献   

5.
The polymerization-induced phase separation process of polyethersulfone (PES) modified bismaleimide resin, 4,4′-bismaleimidodiphenylmethane (BDM), was investigated by time resolved light scattering (TRLS) and scanning electronic microscopes (SEM). At the blends with 10 wt% and 12.5 wt% PES, a phase inversion structure was found by SEM. TRLS results displayed clearly the spinodal decomposition (SD) mechanism and the exponential decay procedure of scattering vector qm, which followed Maxwell-type relaxation equation. The characteristic relaxation time τ for the blends can be described by the Williams-Landel-Ferry equation. It demonstrated experimentally that the phase separation behaviors in these PES modified bismaleimide blends were affected by viscoelastic effect.  相似文献   

6.
Polyethersulfone (PES)-modified epoxy systems with stepwise reaction were studied throughout the entire curing process by using optical microscopes, time-resolved light scattering (TRLS), and a rheolometry instrument compared with that of chainwise polymerization. The results suggested that the phase separation process is mainly controlled by the diffusion of epoxy oligomers for stepwise mechanism system and by that of epoxy monomers for chainwise mechanism system. In case of high PES content (SPES-20%) light-scattering results showed a viscoelastic phase separation and the characteristic relaxation time of phase separation can be described well by the WLF equation. However, in the case of low PES content (SPES-14%) secondary phase separation phenomenon was observed by Optical Microscope and further demonstrated by rheological study.  相似文献   

7.
A novel flexible free-standing films of polyvinyl alcohol (PVA)/silica polymer network dispersed cholesteric liquid crystals (CLC) have been prepared by the sol-gel process. In the hydrolysis of silicon alkoxides tetraethoxysilane (TEOS) processes, the silica having -OH with the -OH groups on PVA formed polymer networks with Si-O-C bonds by dehydration. The cholesteric liquid crystals were incorporated into the networks. The free-standing films were obtained by the spin-coating method. In order to improve the compatibility and microstructure of the cholesteric liquid crystals with PVA/silica polymer networks, the amphiphilic compound of hexadecyl trimethyl ammonium bromide (HDTMA) was introduced into the forming film solutions. Effects of the different ratios of raw materials on the structure of films were investigated. The microscopic morphology of free-standing films and the uniform dispersion of CLCs in the films have been characterized by polarizing optical microscopy (POM), the field emission scanning electron microscope (FESEM), Fourier transform infrared (FT-IR) spectrometer and atomic force microscope (AFM). The free-standing films exhibiting excellent CLC droplets dispersion, mechanical stability, and good flexibility could be useful for flexible displays, switchable optical elements and smart windows.  相似文献   

8.
The objective of the study is to formulate exclusive block copolymer (BCP) nanocomposites by dispersing bcp end‐grafted nanoparticles (bcp‐g‐nps) of PMMA‐b‐PS‐g‐TiO2 within PS‐b‐PMMA matrix. PMMA‐b‐PS‐g‐TiO2 is synthesized using a “grafting‐to” approach and characterized by XPS and TGA to establish that the copolymer chains were bonded to NPs. Good dispersion of bcp‐g‐nps in PMMA and PS‐PMMA bcp films is observed, in contrast to poor dispersion in PS films. In PS‐PMMA films, the compatible and identical bcp nature of the end‐grafted polymer, and large NP size caused it to span across entire PS‐PMMA domains. Poor and good dispersion in PS and PMMA matrices, respectively, can be rationalized by the fact that NPs interactions are driven by the PMMA at the outer corona of the bcp‐g‐nps. Developing bcp‐g‐nps as a strategic route to preparation of highly dispersed high permittivity NPs like titanium dioxide (TiO2) in bcp matrix can have important ramifications for energy storage devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 468–478  相似文献   

9.
采用光学显微镜、光散射和扫描电镜等技术对聚醚砜(PES)/环氧树脂/二(2,6-二甲基苯胺基)甲烷体系的相分离过程进行了研究. 实验结果表明在该体系的相分离的演化过程中存在着明显的慢动态相的粘弹性效应, 同时对于PES含量较低的体系(PES-13.2 wt%和15.9 wt%), 在120和140 ℃固化时均观察到二次相分离现象, 而PES含量较高的体系(PES-18.5 wt%), 在同样温度下固化时仅观察到一次相分离过程.  相似文献   

10.
In this work asymmetric polystyrene-block-polyethylene oxide (PS-PEO) diblock copolymers were blended with high and low molecular polystyrene (PS) homopolymer and spin cast, resulting in the rapid self-assembly of vertically oriented PEO cylinders in a matrix of PS. Due to the kinetically constrained phase separation of the system, increasing addition of homopolymer is shown to reduce the diameter of the PEO domains, even when the homopolymer was of significantly higher molecular weight than the PS block in the PS-PEO diblock copolymer and would be predicted to macro-phase separate from the copolymer. The outcomes of this study provide a novel method that requires the adjustment of a single variable to tune the size of vertically oriented PEO domains between 10 and 100 nm, with potential applications in a number of areas including membrane technologies.  相似文献   

11.
<正>The generalized two-dimensional correlation analysis based on time-resolved light scattering patterns(2D TRLS) has been employed to study the phase separation process of an epoxy-amine-polyethersulfone blend in which the secondary phase separation takes place.The results of the 2D TRLS provided more detailed information that was not readily observed in the 1D TRLS patterns.(i) During the first process of phase separation,the sequential order of coarsening in size of the domains among the larger and smaller ones has been reversed between the diffusion regime and the hydrodynamic regime. (ii) The change of the larger domains in size,due to the hydrodynamic flow in the late stage of the first phase separation process,keeps on taking place earlier than that of the new domains appeared in the secondary phase separation process. (iii) During the secondary phase separation process the size growth of the smaller domains takes place earlier than that of the larger ones,probably due to the assumption that the coarsening mode could decrease the interface tension more quickly.  相似文献   

12.
Compatibility mechanisms between EVA and complex heterophasic iPP-EPx copolymers have been studied as a function of EP content. Systematic studies were made in order to characterize the thermal, morphological and mechanical behavior, before and after blending a series of PP-EPx/EVA concentrations. Multiple melting, proportional to the EP content, was observed for the neat copolymers and an explanation was given for its evolution in terms of rejection-like secondary crystallization. After blending with EVA, the generation of a single Tg was taken as an indication of compatibility between both polymers. A morphological transition toward compatibility was first determined at 20 wt.% EVA which was in correlation with a morphological change from isolated spherical domains to interconnected voids. A second morphological transition from interconnected voids to fibrous crystals was observed above 40 wt.% EVA. This last transition marked the beginning of compatibility. Overall, the evolution of blends was explained in terms of the nature of the complex heterophasic copolymers. Tensile mechanical studies were also consistent with morphological changes. Increases in the x content in EPx and in EVA concentration worked in favor of impact resistance.  相似文献   

13.
The relationship between rheological behavior and phase separation in polyesterimide modified epoxy systems was studied by rheometry, time-resolved light scattering (TRLS), and Differential Scanning Calorimetry (DSC). The rheological behaviors of blends during phase separation showed an exponential grow of complex viscosity, while the phase separation was inhibited by the vitrification of the polyesterimide-rich matrix phase rather than gelation of dispersed epoxy-rich particles. The characteristic relaxation time obtained by the simulation of complex viscosity could be described well by the Williams–Landel–Ferry equation, which corresponded well with the light scattering results. Therefore, this work would further provide the experimental proofs that the exponential relaxation behavior of complex viscosity could be attributed to the viscoelastic flow of epoxy-rich escaping from polyesterimide-rich matrix during phase separation.  相似文献   

14.
 Monodispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles having 9.4 μm in diameter were produced by seeded polymerization for the dispersion of highly n-butyl methacrylate (BMA)-swollen PS particles, and their morphologies were examined. The highly BMA-swollen PS particles (about 150 times the weight of the PS seed particles) were prepared by mixing monodispersed 1.8 μm-sized PS seed particles and 0.7 μm sized BMA droplets prepared with an ultrasonic homogenizer in ethanol/water (1/2, w/w) medium at room temperature. After NaNO2 aqueous solution as inhibitor was added in the dispersion, the seeded polymerization was carried out at 70 °C. In an optical microscopic observation, one or two spherical high contrast regions which consisted mainly of PS were observed inside PS/PBMA composite particles. In the PS domain, there were many fine spherical PBMA domains. Such morphologies were based on the phase separation of PS and PBMA within the homogeneous swollen particles during the seeded polymerization. Received: 04 June 1997 Accepted: 27 August 1997  相似文献   

15.
The polymerization-induced phase-separation process of polyethersulfone (PES)-modified epoxy systems was monitored in situ continuously on a single sample throughout the entire curing process by using optical microscopes, time-resolved light scattering (TRLS), scanning electronic microscopes (SEM), and a rheometry instrument. At specific PES content a viscoelastic transformation process of phase inversion morphology to bicontinuous was found with an optical microscope. The rheological behavior during phase separation corresponds well with the morphology development. Light-scattering results monitoring the phase-separation process of systems with final phase inversion morphology show a typical exponential decay procedure of scattering vector qm. The characteristic relaxation time of phase separation can be described well by the WLF equation.  相似文献   

16.
A copolyester was synthesized and characterized to have 78.6 mol% ethylene succinate unit and 21.4 mol% trimethylene succinate unit by using NMR. The value of the random parameter is 0.97 that can be considered to be a random copolymer. The melting behavior after isothermal crystallization was studied using differential scanning calorimeter by varying the crystallization temperature, the heating rate and the crystallization time. Triple melting peaks were observed. The melting behavior indicates that the upper melting peaks are primarily due to the melting of lamellar crystals with different stability. The Hoffman-Weeks linear plot gives an equilibrium melting temperature of 94.0 °C. The spherulite growth of this copolyester from 72 °C to 30 or 15 °C at a cooling rate of 1 or 2 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera and a DVD recorder. These experiments including the self-nucleation pretreatment took 72 min and 60 min, respectively. Continuous growth rates between melting and glass transition temperatures can be obtained after curve-fitting procedures. These data fit well with those data points measured in the isothermal experiments, which is time consuming. These isothermal and continuous data were separately analyzed with the Hoffman and Lauritzen theory. A regime II-III transition was detected at about 51.5 ± 0.1 °C.  相似文献   

17.
The analytical potential of polystyrene (PS) spin-coated modified compact discs (CDs) surface as platforms for the development of microarray immunoassays is presented. The surface maintained the optical characteristics of compact discs, obtaining a transparent and smooth film polymer of 70 nm thickness, the track being read (λ 780 nm) without errors in a commercial CD reader/writer. The analytical capability of the methodology was demonstrated through an analysis of a neurotoxic compound (2560 spots per disc), reaching 0.08 μg L−1 as limit of detection. These figures demonstrate the enormous potential of using PS spin-coated compact discs in combination with CD players as an easy-to-operate and portable device to develop lab-on-a-disc analytical applications.  相似文献   

18.
Polymer films consisting of a linear poly(dimethylsiloxane) end-functionalized with a luminescent Ir(III) complex (Ir-PDMS), blended with polystyrene (PS), function as optical oxygen sensors. The sensor response arises by quenching of the luminescence from the Ir(III) chromophore by oxygen that permeates into the polymer film. The morphology and luminescence oxygen sensor properties of blend films consisting of Ir-PDMS and PS have been characterized by fluorescence microscopy, atomic force microscopy, and scanning electron microscopy. The investigations demonstrate that microscale phase segregation occurs in the films. In blends that contain a relatively small amount of Ir-PDMS in PS (ca. 10 wt %), the Ir-PDMS exists as circular domains, with diameters ranging from 2 to 5 mum, surrounded by the majority PS phase. For larger weight fractions of Ir-PDMS in the blends, the film morphology becomes bicontinuous. A novel epifluorescence microscopy method is applied that allows the construction of Stern-Volmer quenching images that quantify the oxygen sensor response of the blend films with micrometer spatial resolution. These images provide a map of the oxygen permeability of the polymer blend films with a spatial resolution of ca. 1 mum. The results of this investigation show that the micrometer-sized Ir-PMDS domains display a 2-3-fold higher oxygen sensor response compared to the surrounding PS matrix. This result is consistent with the fact that PDMS is considerably more gas permeable compared to PS. The relationship of the microscale morphology of the blends to their performance as macroscale optical oxygen sensors is discussed.  相似文献   

19.
The glass transition behaviour of polystyrene (PS) with systematically varied topologies (linear, star-like and hyperbranched) confined in nanoscalic films was studied by means of spectroscopic vis-ellipsometry. All applied PS samples showed no or only a marginal depression in glass transition temperature Tg in the order hyperbranched PS (5 K) > star-like PS (3 K) > linear PS (0 K) for the thinnest films analyzed. The Tg behaviour was accompanied by the observation of the film density in dependence of film thickness. A maximum decreased density of about 7% for hyperbranched PS and 5% for star-like PS and again no deviation in density of bulk was found for linear PS. Accordingly, we deduce from these results considering an experimental accuracy of about ± 2 K for Tg and up to ±3% for film density, that the polymer topology only barely influences Tg in the confinement of thin films.  相似文献   

20.
Uniaxially oriented cellulose nanofibers were fabricated by electrospinning on a rotating cylinder collector. The fiber angular standard deviation (a parameter of fiber orientation) of the mats was varied from 65.6 to 26.2o by adjusting the rotational speed of the collector. Optically transparent epoxy resin composite films reinforced with the electrospun cellulose nanofibrous mats were then prepared by the solution impregnation method. The fiber content in the composite films was in the range of 5–30 wt%. Scanning electron microscopy studies showed that epoxy resin infiltrated and completely filled the pores in the mats. Indistinct epoxy/fiber interfaces, epoxy beads adhering on the fiber surfaces, and torn fiber remnants were found on the fractured composite film surfaces, indicating that the epoxy resin and cellulose fibers formed good interfacial adherence through hydrogen-bonding interaction. In the visible light range, the light transmittance was 88–92% for composite films with fiber loadings of 16–32 wt%. Compared to the composite films reinforced with 20 wt% randomly oriented fibers, the mechanical strength and Young’s modulus of the composite films reinforced with same amount of aligned fibers increased by 71 and 61%, respectively. Dynamical mechanical analysis showed that the storage moduli of the composite films were greatly reinforced in the temperature above the glass transition temperature of the epoxy resin matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号