首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
New types of electrically conductive polymeric composites were prepared on a base of high-density polyethylene (HDPE) matrix filled with silver-coated polyamide (PA) particles. The electrical, mechanical and adhesive properties of those composites are reported in this paper. The percolation concentration of the filler within a matrix was found to be 4 vol.%. Composites filled with high filler content were highly electrically conductive; their electrical conductivity reached the value of 6.8 × 102 S cm−1. Mechanical properties and rheology of these composites were discussed. The adhesive properties of the composites to metal sharply increased with an increase in the filler content.  相似文献   

2.
New type of electrically conductive polymeric composites was prepared using ethylene-vinylacetate (EVA) matrix filled with silver-coated wollastonite (W-Ag) fibers. The electrical, mechanical and adhesive properties of the composites are reported in this paper. The electrical percolation threshold was found about 8 vol.% and the highly electrical conductivity value (1.8 × 105 S m−1) is reached for 29 vol.% of filler fraction. The mechanical and adhesive properties of these composites were also discussed and correlated with some models.  相似文献   

3.
Poly(dimethylsiloxane) (PDMS)-HTiNbO5 nanocomposite membranes with various HTiNbO5 nanofiller content were prepared by melt intercalation. WAXS diffraction measurements and TEM observations have suggested that the HTiNbO5 mineral was exfoliated in the PDMS matrix. The influence of the filler in the membrane was evaluated by water diffusion, gas permeation (CO2, N2, O2, ethane and ethylene), toluene pervaporation and by CO2 sorption measurements.A filler content of only 2 wt.% in PDMS-HTiNbO5 nanocomposite membranes slows down the water diffusion significantly, and a filler content of 5 wt.% reduces also the permeability of the films for toluene. The addition of a filler content up to 10 wt.% do not significantly influences the gas permeability (P) except for CO2. The PDMS matrix appears to be highly permeable and, therefore, a decreasing effect on P is only marked for a very high HTiNbO5 content. This effect is more pronounced for CO2, the P value of which decreases by 80% when the amount of nanofiller is 40 wt.%. The sorption measurements show that the interaction between CO2 and PDMS is weak (isotherms agree with Henry’s law). The filler decreases the solubility of CO2 in the films (S = 7.94 × 10−3 and S = 5.44 × 10−3 cm3 STPcm−3 film cmHg−1 for PDMS and PDMS-HTiNbO5 40 wt.%, respectively).  相似文献   

4.
Fluorine tin oxide (FTO) electrode modified by copper oxide microfibers (CuO-MFs) composed of numerous interconnected CuO nanoparticles (CuO-NPs) for nonenzymatic glucose sensor was prepared by electrospinning precursor containing high percentage content of copper nitrate with subsequent calcination. The results of scanning electron microscope (SEM) showed the size of CuO particles composing CuO-MFs depended on the percentage content of copper nitrate in precursor solution. With increasing the percentage content of copper nitrate, the interconnected CuO-NPs would gradually replace the large-size CuO particles to accumulate the CuO-MFs, which have the potential to provide larger surface area and more reaction sites for electrocatalytic activity toward glucose. As a glucose sensor, the CuO-MFs modified FTO electrode prepared by 40 wt.% of copper nitrate exhibited a high sensitivity of 2321 μA mM−1 cm−2 with a low detection limit of 2.2 nM (signal/noise ratio (S/N) = 3). Additionally, the application of the CuO-MFs modified FTO electrode as a glucose sensor for biological samples was demonstrated with satisfactory results.  相似文献   

5.
Pyrrole was polymerized on the surface of titanium foam using FeCl3 as oxidant and the as-synthesized product could be directly used as electrode for supercapacitor. The globular polypyrrole (PPy) particles were firmly loaded on the substrate with high density. The morphology study of PPy film is observed in SEM images, the XRD, FTIR and UV–vis spectra reveal the structure and crystalline of PPy nanoparticles. The electrochemical properties of PPy modified electrode are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and cycle life techniques. The electrochemical measurements showed such a PPy–Ti electrode had a wide working potential window, a high specific capacitance of 855 F g−1 and excellent cycle stability at a discharge current density of 1 A g−1.  相似文献   

6.
Well-dispersed nanocomposites of LDPE with spherical silica and laminar and fibrous silicates have been prepared by melt compounding with nanofiller compositions ranging from 50 to 5 wt%. Spatial dispersion and size domains of the aggregates in the composites series have been evaluated by electron microscopies (SEM and TEM). The methylene rocking (700-740 cm−1) and bending (1400-1480 cm−1) modes of LDPE in these composites were studied by FTIR spectroscopy. When the nanofiller is present in a 40 or 50 wt%, the amorphous phase of polyethylene adopts a monoclinic arrangement. This arrangement is due to the confinement induced by the nanofillers on the polymer matrix. When the fibrous silicate or the spherical silica are used as nanofillers, a dilution of the concentrated composite or annealing bring about a relaxing of the amorphous structure of the polymer, and the monoclinic-like conformations disappear. When the nanofiller is a laminar silicate, dilution or annealing only partly eliminate the monoclinic-like structure, which remains in all cases an important fraction of the polymeric matrix.  相似文献   

7.
Yang P  Wei W  Tao C 《Analytica chimica acta》2007,585(2):331-336
Novel nano-silver coated multi-walled carbon nanotube composites were prepared and used to fabricate a modified electrode. The application of the nano-silver coated multi-walled carbon nanotube composites modified electrode for determination of trace thiocyanate is demonstrated for the first time. The influence of substrate, pH and interference of coexisting substances was investigated for response properties of the electrode. There was a linear relationship at the range 2.5 × 10−9 to 5 × 10−8 mol L−1 and 5 × 10−8 to 1 × 10−6 mol L−1 of thiocyanate with the decrement of anodic DPV peak currents. The limit of detection was 1 × 10−9 mol L−1(S/N = 3). The constructed electrode showed excellent reproducibility and stability. Actual urine and saliva samples of smoker and non-smoker were analyzed and satisfactory results were obtained. This method provides a new way to construct any electrode for biological and environmental analysis.  相似文献   

8.
Novel high performance aluminum nitride (AlN)/poly(ether-ether-ketone) (PEEK) composites containing 0-50 wt.% fractions of AlN were prepared by solution blending method followed by hot pressing to evaluate their density, melting temperature, crystallization, thermal stability, morphological behavior and Vickers hardness by using different characterization techniques. Differential scanning calorimetry results indicated that the AlN particles are very effective nucleating agent, which results in increase in melting point, hot crystallization temperature and crystallinity of composites as the AlN content increases. Thermogravimetric analysis showed enhanced thermal stability of the composites with respect to PEEK. Density and X-ray diffraction techniques showed that crystallinity of the composites increases as the wt.% of AlN content increases in polymer matrix. Scanning electron microscopy revealed that AlN particles were well dispersed with no porosity in composites. Vickers hardness of the samples increased from 24 kg/mm2 for the pure PEEK to 35 kg/mm2 for AlN/PEEK composites.  相似文献   

9.
An extracting medium based on chitosan–polypyrrole (CS–PPy) magnetic nanocomposite was synthesized by chemical polymerization of pyrrole at the presence of chitosan magnetic nanoparticles (CS-MNPs) for micro-solid phase extraction. In this work, magnetic nanoparticles, the modified CS-MNPs and different types of CS–PPy magnetic nanocomposites were synthesized. Extraction efficiency of the CS–PPy magnetic nanocomposite was compared with the CS-MNPs and Fe3O4 nanoparticles for the determination of naproxen in aqueous samples, via quantification by spectrofluorimetry. The scanning electron microscopy images obtained from all the prepared nanocomposites revealed that the CS–PPy magnetic nanocomposite possess more porous structure. Among different synthesized magnetic nanocomposites, CS–PPy magnetic nanocomposite showed a prominent efficiency. Influencing parameters on the morphology of CS–PPy magnetic nanocomposite such as weight ratio of components was also assayed. In addition, effects of different parameters influencing the extraction efficiency of naproxen including desorption solvent, desorption time, amount of sorbent, ionic strength, sample pH and extraction time were investigated and optimized. Under the optimum condition, a linear calibration curve in the range of 0.04–10 μg mL−1 (R2 = 0.9996) was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.015 and 0.04 μg mL−1 (n = 3), respectively. The relative standard deviation for water sample spiked with 0.1 μg mL−1 of naproxen was 3% (n = 5) and the absolute recovery was 92%. The applicability of method was extended to the determination of naproxen in tap water, human urine and plasma samples. The relative recovery percentages for these samples were in the range of 56–99%.  相似文献   

10.
Lactose (L) filled (0-40 wt.%) composites of metallocene linear low-density polyethylene (mLLDPE) were prepared to get a new, environmentally friendly polymeric material. The effect of L on the material was characterized through its mechanical, physico-chemical and rheological properties, and biodegradability in the composting environment (up to 4 months). The microorganisms present in the compost bed have shown great influence on the properties of the new material, as proved by the weight loss data, changes in FTIR-ATR spectra, tensile and rheological properties.The presence of L in the system does not influence tensile properties significantly up to the content of 40 wt.%. The biodegradation of the highest-filled composite has been found substantially higher than that of the others. This is in agreement with the results obtained through surface morphology study by SEM and assessing the presence of microbes in the compost bed where the composites were placed for biodegradation.  相似文献   

11.
Polypropylene (PP) particles were chemically coated with polypyrrole (PPy). The content of polypyrrole varied from 0.8 to 7.6 wt.-%. Electrical conductivity of compression moulded samples depends on the concentration of polypyrrole and reached values from 4×10−10 to 5×10−3 S/cm, which is about 7 orders of magnitude higher than the conductivity in the blends prepared by mechanical mixing of PP and PPy in the same PPy concentration range. Highly conductive composites were also obtained from a mixture of coated and non-coated PP particles. The PP/PPy composites were characterized by elemental analysis, SEM and mechanical testing. The antistatic properties of PP/PPy composites were demonstrated. The electrical and mechanical properties depend on processing of composites.  相似文献   

12.
Abstract

The effect of crosslinking on the toughness of LDPE filled with two different grades of silica was investigated. An elastic plastic fracture mechanism based on the J integral has been used to evaluate the results of notch impact resistance. Crosslinking of the matrix in PE/silica composites leads to improved toughness when compared to uncrosslinked composites. The increase of toughness results mainly from an increase in the amount of plastic deformation and, consequently, higher ultimate deformation at fracture. A positive effect of crosslinking on the development of plastic deformation was also demonstrated by SEM, showing that the fracture is entirely cohesive.  相似文献   

13.
The influence of different polymerization times on the characteristics of films of polypyrrole, PPy, and of composites of polypyrrole-poly[bis(phenoxyphosphazene)], PBPP-PPy, both with p-toluenesulfonic acid (HTSO) as supporting electrolyte and acetonitrile as solvent, has been studied. Films and composites were grown for 10-60 min under galvanostatic control at a current density of 4.2 mA cm−2. The electrooxidation of the PPy in the films and the composites was controlled by diffusion. With increasing electropolymerization time the specific charge storage capacity of both the films and the composites decreased. PBPP increased the conductivity for all polymerization times, but had almost negligible effect on polimerization efficiency. The specific charge storage capacity and the conductivity increased with PBPP thickness. In contrast, the polymerization efficiency decreased for the thicker composite. The presence of PBPP increased PPy/TSO adhesion to the electrode surface but did not decrease its stability. The influence of the polymerization time on the morphology of films and composites was also studied.  相似文献   

14.
Low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) with different copper contents were prepared by melt mixing. The copper powder particle distributions were found to be relatively uniform at both low and high copper contents. There was cluster formation of copper particles at higher Cu contents, as well as the formation of percolation paths of copper in the PE matrices. The DSC results show that Cu content has little influence on the melting temperatures of LDPE and LLDPE in these composites. From melting enthalpy results it seems as if copper particles act as nucleating agents, giving rise to increased crystallinities of the polyethylene. The thermal stability of the LDPE filled with Cu powder is better than that for the unfilled polymer. The LLDPE composites show better stability only at lower Cu contents. Generally, the composites show poorer mechanical properties (except Young's modulus) compared to the unfilled polymers. The thermal and electrical conductivities of the composites were higher than that of the pure polyethylene matrix for both the LDPE and LLDPE. From these results the percolation concentration was determined as 18.7 vol.% copper for both polymers.  相似文献   

15.
PA6 composites with Cloisite® 30B (30B), prepared by different procedures, i.e., melt compounding, static annealing and solution blending, have been characterized by X-ray diffraction and microscopic analyses (TEM, SEM, POM) in order to shed more light on the mechanism of nanostructure development. It has been demonstrated that intercalation of the PA6 chains within the 30B galleries takes place very rapidly, in the absence of applied stresses, even when the size of the clay particles is relatively large (tens of microns) and the clay loading is very high (even 50 wt.%). It has also been shown that, if, conversely, the filler content is low (∼10 wt.% or less) and the particles are tiny (e.g., as for polymer/clay mixtures prepared by precipitation from a common solution), intercalation continues, under quiescent conditions, and leads in reasonable times to complete destruction of the silicate platelets stacking order. The composites with higher filler contents display a mixed exfoliated/intercalated morphology, with the intercalated silicate stacks characterized by an interlayer distance of about 3.7 nm. Contrary to statically annealed composites, the melt kneaded ones are characterized by a homogeneous dispersion of the filler particles and a local parallel orientation of the silicate platelets that induces, during polymer crystallization, an orientation of the polymer crystallites parallel to the faces of the compression molded specimens. Experiments carried out using 30B samples previously treated at 250 °C for 4 h under vacuum (30Bdegr) indicate that this treatment, probably due to the collapsed interlayer spaces, lowers the extent of PA6 chains intercalation. Thus, the relevant PA6/30Bdegr composites are characterized by the coexistence of unintercalated clay tactoids/agglomerates and individual silicate layers formed as result of intercalation on the edges of the filler particles.  相似文献   

16.
Present investigation describes the cost-effective, novel and simple chemical synthesis of polypyrrole (PPy) thin films for supercapacitor application. These PPy films are characterized by different techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The XRD pattern reveals the amorphous nature of PPy thin film, which is highly feasible for supercapacitors. Further, FTIR study confirms the formation of PPy. The surface morphological study exhibit the coverage of uniform and smooth morphology on thin film. The electrochemical supercapacitive properties of PPy thin films are evaluated using cyclic voltammetry (CV) in 0.5 M H2SO4 electrolyte, which exhibits the maximum specific capacitance of 329 Fg−1 at the scan rate of 5 mV s−1. Additionally, an equivalent series resistance (ESR) of PPy thin films is found to be 1.08 Ω using electrochemical impedance measurement.  相似文献   

17.
Epoxy based polymer nano-composite was prepared by dispersing graphite nano-platelets (GNPs) using two different techniques: three-roll mill (3RM) and sonication combined with high speed shear mixing (Soni_hsm). The influence of addition of GNPs on the electrical and thermal conductivity, fracture toughness and storage modulus of the nano-composite was investigated. The GNP/epoxy prepared by 3RM technique showed a maximum electrical conductivity of 1.8 × 10−03 S/m for 1.0 wt% which is 3 orders of magnitude higher than those prepared by Soni_hsm. The percentage of increase in thermal conductivity was only 11% for 1.0 wt% and 14% for 2.0 wt% filler loading. Dynamic mechanical analysis results showed 16% increase in storage modulus for 0.5 wt%, although the Tg did not show any significant increase. Single edge notch bending (SENB) fracture toughens (KIC) measurements were carried out for different weight percentage of the filler content. The toughening effect of GNP was most significant at 1.0 wt% loading, where a 43% increase in KIC was observed. Among the two different dispersion techniques, 3RM process gives the optimum dispersion where both electrical and mechanical properties are better.  相似文献   

18.
Nafion/sulfonated poly(phenylmethyl silsesquioxane) (sPPSQ) composite membranes are fabricated using homogeneous dispersive mixing and a solvent casting method for direct dimethyl ether fuel cell (DDMEFC) applications operated above 100 °C. The inorganic conducting filler, sPPSQ significantly affects the characteristics in the nanocomposite membranes by functionalization with an organic sulfonic acid to PPSQ. Moreover, sPPSQ content plays an important role in membrane properties such as microstructure, proton conductivity, fuel crossover, and single cell performance test. With increasing sPPSQ content in the nanocomposite membrane, the proton conductivity increased and fuel crossover decreased. However, in a higher temperature range above 110 °C, Nafion/sPPSQ 5 wt.% composite membrane has the highest proton conductivity. Also, the DME permeability for the composite membrane with higher sPPSQ content increased sharply. The excessive sPPSQ content caused a large aggregation of inorganic fillers, leading to the deterioration of membrane properties. In this study, the optimal sPPSQ content for maximizing the DDMEFC performance was 5 wt.%. Our nanocomposite membranes demonstrated proton conductivities as high as 1.57 × 10−1 S/cm at 120 °C, which is higher than that of Nafion. The cell performances were compared to Nafion/sPPSQ composite membrane with Nafion 115, and the composite membrane with sPPSQ yielded better cell performance than Nafion 115 at temperatures ranging from 100 to 120 °C and at pressures from 1 to 2 bar.  相似文献   

19.
Polymer composites with different concentrations of organometallics (ferric oxalate) dispersed PMMA were prepared. PMMA was synthesized by solution polymerization technique. These films were irradiated with 120 MeV Ni10+ ions in the fluence range 1011-5 × 1012 ions/cm2. The radiation induced modifications in dielectric properties, microhardness, structural changes and surface morphology of polymer composite films have been investigated at different concentrations of filler and ion-fluences. It was observed that electrical conductivity and hardness of the films increase with the concentration of the filler and also with the fluence. The dielectric constant (?) obeys the Universal law given by ?αfn−1. The dielectric constant/loss is observed to change significantly due to irradiation. This suggests that ion beam irradiation promotes the metal to polymer bonding and convert polymeric structure into hydrogen depleted carbon network. This makes the composites more conductive and harder. Surface morphology of the films has been studied using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The average surface roughness is observed to increase after irradiation as revealed by AFM studies. The SEM images show the blisters type of phenomenon on the surface due to ion beam irradiation.  相似文献   

20.
Epoxy acrylate resin was prepared by endcapping the acrylic acid to epoxy resin backbone in the presence of triphenyl phosphene as catalyst. The structure was elucidated by IR and NMR spectroscopy. Epoxy and epoxy acrylate composites were prepared by mixing different concentrations of mica, magnesium hydroxide and calcium silicate with each epoxy/hardener and epoxy acrylate/styrene mixtures, respectively. The permittivity ε′, dielectric loss ε′′ and loss tangent tan δ were measured for these composites in the frequency range (102-10Hz) and at 30 °C. The data obtained were analyzed into two absorption regions related to Maxwell-Wagner effect and to some local molecular motions rather than the main chain motion. The higher values of ε′ and the lower values of tan δ given for the composites containing the epoxy acrylate resin indicate some improvement in the dielectric properties when compared with those containing the epoxy resin. The effect of filler type and filler content on the positron annihilation lifetime and its intensity as well as S-parameter for epoxy and epoxy acrylate composites were also studied. The high values of S-parameter noticed by with increasing filler content indicates some increase in free electrons which lead to an increase in electrical conductivity. The highest value of hardness was obtained in the case of calcium silicate followed by mica and magnesium hydroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号