首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of several aliphatic and aromatic polyesters with lipases from Candida cylindracea (CcL) and Pseudomonas species (PsL) was investigated applying nanoparticles of the polymers. Nanoparticles (diameters 50 nm to 250 nm) of a particle concentration up to 6 mg/ml could be prepared by a precipitation technique without adding any stabilizing agents in the aqueous solutions. Using a titration system to monitor ester cleavage, enzymatic degradation experiments could be performed in the time scale of some minutes. A kinetic model is proposed which is based on a surface erosion process dependent on molar ester bond density and enzyme loading. Experimental evidence provided that degradation of the particles occurs uniformly at the surface after a Langmuir type adsorption of the enzyme. Rate constants and the maximal enzyme loadings of enzyme were estimated from the kinetic model for different polyesters and the rate constants correlate well with the length of the diacid component of the polyester. Comparison of degradation rates of polyester films and nanoparticles revealed that nanoparticles of aliphatic polyesters are in the amorphous state. Hence, differences of the rate constants reflect the direct influence of the polymer structure on the enzymatic hydrolysis not overlaid by effects of crystallinity.  相似文献   

2.
In the present review the findings concerning the effect of nanofillers to biodegradation and enzymatic hydrolysis of aliphatic polyesters were summarized and discussed. Most of the published works are dealing with the effect of layered silicates such as montmorillonite (unmodified and modified with organic compounds), carbon nanotubes and spherical shape additives like SiO2 and TiO2. The degradation of polyester due to the enzymatic hydrolysis is a complex process involving different phenomena, namely, water absorption from the polyesters, enzymatic attack to the polyester surface, ester cleavage, formation of oligomer fragments due to endo- or exo-type hydrolysis, solubilization of oligomer fragments in the surrounding environment, diffusion of soluble oligomers by bacteria and finally consumption of the oligomers and formation of CO2 and H2O. By studying the published works in nanocomposites, different and sometimes contradictory results have been reported concerning the effect of the nanofillers on aliphatic polyesters biodegradation. Most of the papers suggested that the addition of nanofillers provokes a substantial enhancement of polyester hydrolysis due to the catalyzing effect of the existed reactive groups (–OH and –COOH), to the crystallinity decrease, to the higher hydrophilicity of nanofillers and thus higher water uptake, to the higher interactions, etc. However, there are also some papers that suggested a delay effect of nanofillers to the polyesters degradation mainly due to the barrier effect of nanofillers and the lower available surface for enzymatic hydrolysis.  相似文献   

3.
Novel biodegradable network polyesters were prepared from multifunctional aromatic carboxylic acids [trimesic acid (Y), pyromellic acid (X), and mellic acid (YM)] and poly(?‐caprolactone) (PCL) diols with molecular weights of 530, 1250, and 2000. Prepolymers prepared by a melt polycondensation method were cast from dimethylformamide solutions and postpolymerized at 220 °C for various times to form a network. The resultant films were transparent, flexible, and insoluble in organic solvents. The network polyesters obtained were characterized by infrared absorption spectra, wide‐angle X‐ray diffraction analysis, density measurements, differential scanning calorimetry, thermomechanical analysis, and tensile testing. Some network polyester films, including YPCL1250, XPCL1250, and YMPCL2000, showed elastomeric properties with high ultimate elongation and low tensile modulus. The enzymatic degradation was measured by the weight loss of the network polyester films in a buffer solution with Rhizopus delemar lipase at 37 °C. The degree and rate of degradation increased with the increasing molecular weight of the PCL diols, but they decreased in the order of YPCL > XPCL > YMPCL because of the increase in the crosslinking densities of the network films. The degraded products after enzymatic degradation showed that the ester linkage of the PCL component and the aromatic ester linkage between Y and PCL diols were hydrolyzed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4523–4529, 2002  相似文献   

4.
A series of bio-based poly(butylene adipate-co-butylene furandicarboxylate) (PBAFs) copolyesters were synthesized from 2,5-furandicarboxylic acid (FDCA), adipic acid (AA), and 1,4-butanediol (BDO) through a two-step polycondensation reaction. The copolyesters were characterized by 1H NMR, GPC, DSC, XRD and tensile tests, and their enzymatic degradation behaviors were also investigated. They were random copolymers whose composition was well controlled and the weight average molecular weight (Mw) ranged from 54,100 to 76,800 g/mol. By combining the results of DSC and XRD, with increasing FDCA content, PBAFs changed from semi-crystalline polymers to nearly amorphous polymers, then to semi-crystalline polymers again. Specifically, the crystallizability and melting temperature (Tm) decreased with FDCA content 0–50 mol%, but rose again at FDCA content 75–100 mol%. And, the glass transition temperature (Tg) increased continuously with increasing FDCA content. Consequently, the tensile modulus and strength decreased but the ultimate elongation increased at lower FDCA content (0–50 mol%), which were converse at higher FDCA content (75–100 mol%). Especially, the P(BA-40 mol% BF) shows outstanding elasticity and rebound resilience. In addition, the influences of FDCA content on the enzymatic degradation by lipase from porcine pancreas were studied in terms of the weight loss and morphological change. At FDCA content of 0–50 mol%, the copolyesters showed biodegradability but only the degradation rate of P(BA-10 mol% BF) was faster than PBA. When the FDCA content were 75–100 mol%, they were actually un-degradable. Thus, depending on their composition, PBAFs might find applications from biodegradable elastomers to thermoplastics.  相似文献   

5.
A series of aliphatic biodegradable polyesters modified with fumaric residues was synthesized by transesterification in the melt of dimethyl succinate, dimethyl fumarate and 1,4-butanediol. The amount of unsaturation, originating from the fumaric acid residues in the polyesters chains was varied from 5 to 20 mol%. The molecular structure and composition of the polyesters were determined by 1H NMR spectroscopy. The effects of the content of fumaric residues on the thermal and thermo-oxidative properties of the synthesized polyesters were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis. The degree of crystallinity was determined by DSC and wide angle X-ray scattering. The degrees of crystallinity of the unsaturated copolyesters were reduced, while the melting temperatures were higher in comparison to poly(butylene succinate). Biodegradation of the synthesized copolyesters was estimated in enzymatic degradation tests using a buffer solution with Rhizopus arrhizus lipase at 37 °C. Although the degree of crystallinity of the copolyesters decreases slightly with increasing unsaturation, the biodegradation is not enhanced suggesting that not only the chemical structure and molecular stiffness but also the morphology of the spherulites has an influence on the biodegradation properties. The highest biodegradability was observed for the copolyesters containing 5 and 10 mol% of fumarate units.  相似文献   

6.
A series of aliphatic homopolyesters and copolyesters was prepared from 1,4 butanediol and dimethylesters of succinic and adipic acids through a two-step process of transesterification and polycondensation. The synthesized polyesters were characterized by means of nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), viscosity measurements, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and mechanical property measurements. The homopolymer poly(butylene succinate) exhibited the highest tensile strength, which decreased with increasing adipate unit content, passed through a minimum at copolyester composition close to equimolarity and then increased towards the value of poly(butylene adipate). It is interesting to note that in contrast to tensile strength, the elongation at break increased for adipate unit content of 20-40 mol%. The biodegradation of the polymers was investigated by soil burial and enzymatic hydrolysis using three enzymes, Candida cylindracea lipase, Rhizopus delemar lipase, and Pseudomonas fluorescens cholesterol esterase. It appears that the key factor affecting material degradation was its crystallinity.  相似文献   

7.
The hydrolytic degradation of a series of homo- and co-polyesters analogous to poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), prepared from carbohydrate-based monomers, was studied. The degradation process was carried out at temperatures of approximately 10 °C above the Tg of the polymers. All the studied polyesters were found to degrade at significant rates, and degradability showed a clear dependence on the configuration of the sugar units present in the polymer chain. No weight loss was detected upon degradation, apparently due to the non-solubility of the degraded products in the aqueous incubation medium. Hydrolysis of co-polyesters took place preferentially by cleavage of the ester groups of the sugar units.  相似文献   

8.
A series of biodegradable polyesters were synthesized from dicarboxylic acids and 1,3-propanediol catalyzed by transestrification polycondensation reaction in the bulk. The structure, average molecular weights and physical properties of the resulting aliphatic polyesters were characterized by 1H NMR, FT-IR, solution viscosity, GPC, DSC and TGA. Homopolyesters show higher degree of crystallinity, melting and thermal stability in comparison to copolyesters. The biodegradability of the polyesters was determined by monitoring the normalized weight loss of polyester films with time in phosphate buffer (pH 7.2) without and with Rhizopus delemar lipase at 37 °C. The rate of enzymatic degradation of homopolyesters follows the path PPSu > PPAd > PPSe. PPSe did not show significant weight loss in presence of enzyme which may be due to its highest degree of crystallinity and melting point compared to the PPSu, PPAd and copolyesters. In the soil burial degradation polyester sample showed severe surface degradation by the attack of microorganism.  相似文献   

9.
The solid solutions of barium containing Type I clathrate, Ba8−δSi46−xGex (0?x?23) were prepared under high-pressure and high-temperature conditions of 3 GPa at 800°C. All the solid solutions showed superconductivity, and the transition temperature (Tc) decreased from 8.0 to 2.0 K as the germanium content increased from x=0 to 23 in Ba8−δSi46−xGex. The single crystals with five different compositions were obtained and the structures, compositions, and site occupancies were determined from X-ray single-crystal analysis. A slight barium deficiency was observed at Ba1 (2a) sites for all the clathrates. The Ge atoms replaced the Si atoms at the Si3 (24k) site in the composition range of x<8, and then at the Si2 (16i) site. The crystals had a slight deficiency in the covalent (Si, Ge) network and the deficiency increased with the increase of the Ge content.  相似文献   

10.
We report the first instance of a hydrothermal synthesis of zinc germanate (Zn2GeO4) nano-materials having a variety of morphologies and photochemical properties in surfactant, template and catalyst-free conditions. A systematic variation of synthesis conditions and detailed characterization using X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy and small angle X-ray scattering led to a better understanding of the growth of these particles from solution. At 140 °C, the zinc germanate particle morphology changes with pH from flower-shaped at pH 6.0, to poly-disperse nano-rods at pH 10 when the Zn to Ge ratio in the synthesis solution is 2. When the Zn to Ge ratio is reduced to 1.25, mono-disperse nano-rods could be prepared at pH 7.5. Nanorod formation is also independent of the addition of cetyltrimethylammonium bromide (CTAB), in contrast to previous reports. Photocatalytic tests show that Zn2GeO4 nano-rods (by weight) and flower shaped (by surface area) are the most active for methylene blue dye degradation among the synthesized zinc germanate materials.  相似文献   

11.
In the present study the miscibility behaviour and the biodegradability of poly(ε-caprolactone)/poly(propylene succinate) (PCL/PPSu) blends were investigated. Both of these aliphatic polyesters were laboratory synthesized. For the polymer characterization DSC, 1H NMR, WAXD and molecular weight measurements were performed. Blends of the polymers with compositions 90/10, 80/20, 70/30 and 60/40 w/w were prepared by solution-casting. DSC analysis of the prepared blends indicated only a very limited miscibility in the melt phase since the polymer-polymer interaction parameter χ12 was −0.11. In the case of crystallized specimens two distinct phases existed in all studied compositions as it was found by SEM micrographs and the particle size distribution of PPSu dispersed phase increased with increasing PPSu content. Enzymatic hydrolysis for several days of the prepared blends was performed using Rhizopus delemar lipase at pH 7.2 and 30 °C. SEM micrographs of thin film surfaces revealed that hydrolysis affected mainly the PPSu polymer as well as the amorphous phase of PCL. For all polymer blends an increase of the melting temperatures and the heat of fusions was recorded after the hydrolysis. The biodegradation rates as expressed in terms of weight loss were faster for the blends with higher PPSu content. Finally, a simple theoretical kinetic model was developed to describe the enzymatic hydrolysis of the blends and the Michaelis-Menten parameters were estimated.  相似文献   

12.
Biodegradable polyesters, poly(butylene succinate adipate) (PBSA), poly(butylene succinate) (PBS), poly(ethylene succinate) (PES), poly(butylene succinate)/poly(caprolactone) blend (HB02B) and poly(butylene adipate terephthalate) (PBAT), were evaluated about degradability for enzymatic degradation by lipases and chemical degradation in sodium hydroxide solution. In enzymatic degradation, PBSA was the most degradable by lipase PS, on the other hand, PBAT containing aromatic ring was little degraded by eleven kinds of lipases. In 1N NaOH solution, degradation rate of PES with ethylene unit was extremely fast, in comparison with other polyesters. Interestingly the degradation rate of PBSA in enzymatic degradation by lipase PS was faster than in chemical degradation.  相似文献   

13.
A series of polyesters were synthesized by the bulk polycondensations of the respective combinations of two difuranic diesters, i.e., bis(5-(methoxycarbonyl)-2-furyl)methane ( 4a ) and 1,1-bis(5-(methoxycarbonyl)-2-furyl)ethane ( 4b ), with two 1,4 : 3,6-dianhydrohexitols [1,4 : 3,6-dianhydro-D -glucitol ( 1 ) and 1,4 : 3,6-dianhydro-D -mannitol ( 2 )], four aliphatic diols, and three oligo(ethylene glycol)s. The polycondensations were carried out at 220–230°C in the presence of titanium isopropoxide as a catalyst, giving polyesters having number average molecular weight up to 2.4 × 104. These polyesters are soluble in a variety of solvents including chlorinated hydrocarbons, 1,4-dioxane, dimethyl sulfoxide, dimethylformamide, and sulfolane. Soil-burial tests along with enzymatic degradation experiments showed that these polyesters are potentially biodegradable. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2729–2737, 1997  相似文献   

14.
This article presents the studies on the thermal and viscoelastic properties of novel epoxy-dicyclopentadiene-terminated polyesters-styrene copolymers. The novel materials were prepared during a three step process including the addition reaction of maleic acid to norbonenyl double bond of dicyclopentadiene; polycondensation of acidic ester of dicyclopentadiene, cyclohex-4-ene-dicarboxylic anhydride, maleic anhydride, and suitable glycol: ethylene, diethylene, or triethylene glycol; and the epoxidation process of prepared polyesters. It allowed obtaining novel epoxy-dicyclopentadiene-terminated polyesters which were successfully used as a component of different styrene content (10?C80?mass%) copolymers. The influence of the structures of polyester and styrene content on the cross-linking density (v e), tg?? max, tg?? max height, storage modulus (E?? 20?°C), FWHM values as well as the thermal stability of copolymers was evaluated by TG, DSC, and DMA analyses and discussed.  相似文献   

15.
Three cardo bisphenols containing decahydronaphthalene group viz., 4,4′-(octahydro-2(1H)-naphthylidene)bisphenol, 4,4′-(octahydro-2(1H)-naphthylidene)bis-3-methylphenol and 4,4′-(octahydro-2(1H)-naphthylidene)bis-3,5-dimethylphenol were synthesized starting from commercially available 2-naphthol and were utilized for synthesis of new aromatic polyesters by phase transfer-catalyzed interfacial polycondensation with isophthaloyl chloride, terephthaloyl chloride and a mixture of isophthaloyl chloride and terephthaloyl chloride (50:50 mol %). Inherent viscosities and number average molecular weights (Mn) of polyesters were in the range 0.35-0.84 dL/g and 13,300-48,500 (Gel Permeation Chromatography, polystyrene standard), respectively. Polyesters were readily soluble in organic solvents such as dichloromethane, chloroform, tetrahydrofuran, meta-cresol, pyridine, N,N-dimethylformamide, N,N-dimethylacetamide, and 1-methyl-2-pyrrolidinone at room temperature and could be cast into tough, transparent and flexible films from their chloroform solutions. Wide-angle X-ray diffraction measurements revealed the amorphous nature of polyesters. The glass transition temperature of polyesters was in the range 207-287 °C. The temperature at 10% weight loss (T10), determined from thermogravimetric analysis of polyesters, was in the range 425-460 °C indicating their good thermal stability.  相似文献   

16.
Regular‐network polyester‐amines were prepared from 1,1,1‐triethanolamine (YN) and various dicarboxylic acids [HOOC? (CH2)n?2? COOH, n = 6–14]. A prepolymer prepared by melt polycondensation was cast from dimethylformamide solution and postpolymerized at 220 °C in a nitrogen flow for various periods of time to form a network. The resultant films were transparent, flexible, and insoluble in organic solvents. The network polyester‐amines obtained were characterized by infrared absorption spectra, wide‐angle X‐ray diffraction analysis, density, DSC, and thermomechanical analysis. The biodegradation experiments for the network polyester‐amine films were carried out in enzymatic solution with Rhizopus delemar or Pseudomonas cepacia lipase and in an activated sludge. The degree and rate of biodegradation were estimated by the weight loss of the films. After incubation in Rhizopus delemar lipase solution for 24 h, weight loss was hardly observed for YN6–7, whereas it increased greatly for YN8–13 (13–51 g/m2), and then it decreased rapidly for YN14. The methylene‐chain dependence of degradation was essentially the same as in the case of network polyesters from glycerol and various aliphatic dicarboxylic acids reported previously. Psedomonas cepacia lipases also degraded YNn films, but the rate of degradation was much slower than Rhizopus delemar lipase. In the exposure to activated sludge for 30 days, the network polyester films with medium methylene‐chain lengths (YN7–11) showed the lager weight loss, as in the case of the enzymatic degradation, whereas the rate of biodegradation was much slower than that of the enzymatic degradation with Rhizopus delemar lipase. The effect of the protonation of the film with hydrochloric acid on the enzymatic degradation was also examined. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2896–2903, 2001  相似文献   

17.
The conditions of synthesis of statistical poly(ethylene succinate-co-terephthalate) copolymers (2GTS) and high molecular weight poly(ethylene succinate) (PES) with good hydrolytic and optical parameters, designed for the production of biodegradable products and resins, are presented in this article. Copolymers were prepared by melt polycondensation of bis-(β-hydroxyethylene terephthalate) (BHET) and succinic acid (SA) with excess of ethylene glycol (2G) in the presence of a novel titanium/silicate catalyst (C-94) and catalytic grade of germanium dioxide (GeO2) as cocatalyst. The chemical structure and physical properties of those materials were characterized by 1H NMR, FT-IR, dynamical-mechanical thermal analyses (DMTA), differential scanning calorimetry (DSC), solution viscosity and spectroscopic methods. The hydrolytic degradation was performed in a water solution with variable pH, also in garden soil and in compost. The highest hydrolytic degradation rate was observed for pH 4 and for compost. Better hydrolytic degradation values in compost medium were observed for copolyester prepared in the presence of GeO2 as polycondensation cocatalyst. The copolyester with 40 mol% of aliphatic units was chosen for industrial syntheses which were performed in ELANA and subsequently the processing parameters and compatibility with potato starch of this polyester were checked by BIOP Biopolymer Technologies AG.  相似文献   

18.
Biodegradable elastomeric network polyesters were prepared from multifunctional aliphatic carboxylic acids such as tricarballylic acid (Yt) or meso-1,2,3,4-butanetetracarboxylic acid (Xb) and poly(epsilon-caprolactone) (PCL) diols with molecular weights of 530, 1,250 and 2,000 g.mol-1. Prepolymers prepared by a melt polycondensation were cast from DMF solution and postpolymerized at 280 degrees C for various periods of times to form a network. The resultant films were transparent, flexible and insoluble in organic solvents. The network polyesters obtained were characterized by IR absorption spectra, WAXS, density measurement, DSC, and tensile test. YtPCL1250, and XbPCL1250 network polyester films showed good elastomeric properties with high ultimate elongation (540-590%), and low Young's modulus (2.5-3.3 MPa). The enzymatic degradation was estimated by the weight loss of network films in a buffer solution with Rhizopus delemar lipase at 37 degrees C. The degree and rate of degradation were significantly affected by the molecular weight of PCL diol, chemical structures of multifunctional aliphatic carboxylic acids and the morphology of network films. The changes in the solid states of network films during the degradation were also estimated by the results of DSC and WAXS. [see text]  相似文献   

19.
Four saturated polyesters poly(hexamethylene adipate), poly(ethylene adipate), poly(hexamethylene terephthalate) and poly(ethylene terephthalate) were prepared. The resulting materials were characterized by IR and 1H NMR, end group analysis and gel permeation chromatography. The effect of blending these polyesters (5 and 10%) with poly(vinyl chloride) (PVC) in the melt was investigated in terms of changes in the thermal behaviour of PVC by studying the weight loss after 50 min at 180 °C, colour changes of the blend before and after aging for one week at 90 °C, the variation in glass transition temperature and the initial decomposition temperature. The results gave proof for the stabilizing role played by the investigated polyesters against the thermal degradation of PVC. The best results are obtained when PVC is mixed with 5% aliphatic polyesters rather than with aromatic ones. This is well illustrated not only from the increase in the initial decomposition temperature (IDT), but also from the decrease of % weight loss and from the lower extent of discolouration of PVC, which is a demand for the application of the polymer. It was also found that blending PVC with 5% of the four investigated polyesters before and after aging for one week at 90 °C gave better mechanical properties even than that of the unaged PVC blank.  相似文献   

20.
Levoglucosenone (LGO) is a cellulose-derived molecule that is present commercially on a multi-ton/year scale. Taking advantage of the α,β-conjugated ketone of LGO, a new citronellol-containing 5-membered lactone (HBO-citro) was synthesized through a one-pot two-step pathway involving oxa-Michael addition and Baeyer-Villiger oxidation. The solvent-free treatment of HBO-citro with NaBH4 at room temperature led to the full reduction of the lactone moiety which gave a novel fully renewable triol monomer having a citronellol side chain (Triol-citro). Noticeably, by simply changing the reducing agent, temperature and reaction duration, the partial reduction of HBO-citro can be achieved to yield a mixture of 5- and 6-membered Lactol-citro molecules. Triol-citro was chosen to prepare functional renewable polyesters having citronellol pendant chains via polycondensation reactions with diacyl chlorides having different chain lengths. Good thermal stability (Td5% up to 170 °C) and low glass transition temperatures (as low as −42 °C) were registered for the polyesters obtained. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG) to assess their biodegradability. A higher degradation profile was found for the polyesters prepared using co-monomers (acyl chlorides) having longer chain lengths. This is likely due to the decreased steric hindrance around the ester bonds which allowed enhanced accessibility of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号