首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
��־ǿ 《高分子科学》2013,31(1):110-121
A supported TiCl4/MgCl2 catalyst without internal electron donor (O-cat) was prepared firstly. Then it was modified by 2,6-diisopropylphenol to make a novel modified catalyst (M-cat). These two catalysts were used to catalyze ethylene/1-hexene copolymerization and 1-hexene homopolymerization. The influence of cocatalyst and hydrogen on the catalytic behavior of these two catalysts was investigated. In ethylene/1-hexene copolymerization, the introduction of 2,6-iPr2C6H3O-groups did not deactivate the supported TiCl4/MgCl2 catalyst. Although the 1-hexene incorporation in ethylene/1-hexene copolymer prepared by M-cat was lower than that prepared by O-cat, the composition distribution of the former was narrower than that of the latter. Methylaluminoxane (MAO) was a more effective activator for M-cat than triisobutyl-aluminium (TIBA). MAO led to higher yield and more uniform chain structure. In 1-hexene homopolymerization, the presence of 2,6-iPr2C6H3O-groups lowered the propagation rate constants. Two types of active centers with a chemically bonded 2,6-iPr2C6H3O-group were proposed to explain the observed phenomena in M-cat.  相似文献   

2.
Using triethylaluminum (TEA), triisobutylaluminum (TIBA) or TEA/TIBA mixtures of molar ratio 75/25, 50/50 and 25/75 as the cocatalyst, five different ethylene-propylene copolymer samples were synthesized by a MgCl2/SiO2/TiCl4/diester type Ziegler-Natta catalyst in a slurry polymerization process. The synthesized copolymers are strongly heterogeneous in chain structure and were fractionated into part of nearly random copolymer and part of segmented copolymer. Both polymerization activity and copolymer structure were found to be markedly changed when the cocatalyst was changed from TEA to TEA/TIBA mixtures or pure TIBA. As the content of TEA in cocatalyst increases, yield of the random part of product increases and the yield of the crystalline segmented copolymer part decreases. There is also a decrease in ethylene content of the whole product with increasing TEA amount. Copolymerization behaviors of the TEA/TIBA mixture activated catalysis systems are not simple superposition of those activated by pure TEA and TIBA. When a 50/50 TEA/TIBA mixture was used as cocatalyst, the copolymerization activity became the highest, and yields of both the random copolymer part and the segmented copolymer part are close to the highest level. On the other hand, both parts of the copolymer produced with a 50/50 TEA/TIBA mixture are relatively more blocky than the products of TEA or TIBA systems, and difference in ethylene content between the random part and the segmented part was the smallest. The segmented copolymer part of three typical samples was further fractionated by temperature-gradient extraction fractionation into fractions of different ethylene content and sequence distribution. Changing TEA content in the cocatalyst exerted strong influences also on the fraction distribution of the segmented part of copolymer.  相似文献   

3.
采用MgCl2负载TiCl4及1,3-二氯-2-丙醇给电子体(XROH),与三乙基铝助催化剂组成的催化剂体系,合成了1-己烯共聚率高且宽分子量分布的乙烯/1-己烯共聚物。 讨论了催化体系的组成、配比和聚合条件对乙烯/1-己烯共聚合行为,共聚物结构、分子量及分子量分布的影响。 结果表明,n(Ti)∶n(Mg)=10∶1,n(XROH)∶n(MgCl2)=2.6∶1,n(Al)∶n(Ti)=100∶1,乙烯压力0.45 MPa,聚合温度80 ℃,聚合时间2 h,共聚单体(1-hexene)浓度0.25 mol/L时,催化效率达23.2 kg/g cat。 采用13C NMR、X-ray、SEM、WAXD、DSC、GPC等测试技术对催化剂、共聚物的结构进行了表征。 结果表明,在Zieglar-Natta(Z-N)催化体系中,给电子体多卤代醇与TiCl4结合,载体MgCl2的晶体结构发生了变化。 结晶度降低,有利于催化剂负载量的提高(ω(Ti)=4.8%)和催化效率增大。 催化体系产生了多种活性中心,使聚烯烃分子量分布变宽(15~20)。 多卤代醇还可增强1-己烯与乙烯的共聚能力,在共聚物中1-己烯的摩尔分数达5.1%。  相似文献   

4.
A new polymerizable stabilizer 4-(hex-5-enyl)-2,2,6,6-tetramethylpiperidine is prepared. This sterically hindered piperidine was copolymerized with propylene over a fourth generation TiCl4/MgCl2 Ziegler–Natta catalyst, using Al(C2H5)3 as cocatalyst and diphenyldimethoxysilane, DMS, as external electron donor. The copolymer exhibited high thermo-oxidative stability even after exhaustive extraction with n-heptane.  相似文献   

5.
Pt/AlPO4-5 and Pt/AlPO4-11 showed some characteristics of monofunctional aromatization catalysts and higher aromatic selectivity inn-heptane aromatization than inn-hexane aromatization. Especially they exhibited resistance for thiophene poisoning.  相似文献   

6.
Thermally pretreated catalysts were prepared by heating MgCl2/THF/TiCl4 (TT-0) at 80°C for 5 min (TT-1) and 60 min (TT-2), and at 108°C for 5 min (TT-3) and 60 min (TT-4). Ethylene–1-hexene copolymers were prepared with these catalysts. The TT-1 catalyst produced more blocky and higher 1-hexene content polymer than TT-0, 2, 3, and 4. Temperature rising elution fractionation (TREF) analysis was used to investigate the chemical composition distribution of the ethylene–1-hexene copolymer, exhibiting bimodal distribution for TT-0 and trimodal for TT-1, 2, 3, and 4. A portion of higher hexene content of the copolymer markedly increased when the copolymerization was performed with TT-1, indicating that copolymerization active sites were newly generated. Portion of homopolyethylene increased drastically when the copolymerization was performed with TT-4, indicating that ethylene homopolymerization active sites were increased. Gel permeation chromatography (GPC) also revealed that three kinds of active sites existed on the catalyst. 13C-NMR spectrum of each fraction after TREF analysis suggested that the isospecific active site could polymerize 1-hexene well, resulting in random and alternating copolymers. A scheme for generation of the active site and change of its nature during thermal treatment of bimetallic complex catalyst is proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 291–300, 1998  相似文献   

7.
Various (SiO2/MgO/MgCl2)·TiCl x Ziegler-Natta catalysts modified by the third metal elements were synthesized by the co-impregnation of water-soluble magnesium and the third metal salts. Several key factors including the electronegativity of the third metal elements, catalyst performances in ethylene homo-polymerization, ethylene/1-hexene copolymerization and hydrogen response were systematically investigated. Both the catalyst performance and the polymer properties are influenced by the introduction of the third metal elements. Compared with the unmodified (SiO2/MgO/MgCl2)·TiCl x Ziegler-Natta catalyst, activity and 1-hexene incorporation are enhanced by the introduction of zirconium, vanadium, aluminum and chromium, while deteriorated by the addition of ferrum, nickel, molybdenum and tungsten. Correlations of the catalyst activities and 1-hexene incorporation ability with the electronegativity of the third metal elements are discovered. It is found that the lower electronegativity of the third metal elements leads to the catalyst with higher activity and higher α-olefin co-polymerization ability. The polyethylene produced by a nickel modified catalyst showed broad molecular weight distribution (MWD) and the lowest average molecular weight (MW), while by using a ferrum modified catalyst, the resulting polyethylene had the highest MW, reaching the ultra-high MW area. Vanadium and chromium modified catalysts demonstrated the best hydrogen response.  相似文献   

8.
Summary : A series of polypropylene/poly(ethylene-co-propylene) in-reactor alloy were synthesized by a TiCl4/MgCl2/SiO2/diester type Ziegler-Natta catalyst, using triethylaluminium (TEA), triisobutylaluminium (TIBA) or TEA/TIBA mixtures of different molar ratio as cocatalyst. Mechanical properties of the alloy are strongly influenced by the cocatalyst. Toughness-stiffness balance of the alloy synthesized using a 50/50 TEA/TIBA mixture as cocatalyst is much better than that of the alloy based on pure TEA cocatalyst. Changes in copolymer chain structure and composition distribution are thought to be the main reason for this improvement of properties.  相似文献   

9.
The copolymerizations of ethylene with 1-hexene or 1-octene by using TiCl4 /MgCl2 /THF catalysts modified with different metal halide additives(ZnCl2, SiCl4, and the combined ZnCl2-SiCl4) were investigated based on catalytic activity and copolymer properties. It was found that the catalyst modified with mixed ZnCl2-SiCl4 revealed the highest activities for both ethylene/1-hexene and ethylene/1-octene copolymerization. The increase in activities was due to the formation of acidic sites by modifying the catalysts with Lewis acids. Based on the FTIR measurements, the characteristic C―O―C peaks of the catalysts modified with metal halide additives were slightly shifted to lower wavenumber when compared to the unmodified catalyst. This showed that the modified catalysts could generate more acid sites in the TiCl4 /MgCl2 /THF catalytic system leading to an increase in activities as well as comonomer insertion(as proven by13C-NMR). However, Lewis acidmodifications did not affect the microstructure of the copolymers obtained. By comparison on the properties of copolymers prepared with the unmodified catalyst, it was found that polymers with ZnCl2 and/or SiCl4 modification exhibited a slight decrease in melting temperature, crystallinity and density. It is suggested that these results were obtained based on the different amount of α-olefins insertion, regardless of the types of Lewis acids and comonomer.  相似文献   

10.
Unmodified and SiCl4-modified spherical zirconia-supported methylaluminoxane were used as cocatalyst for propylene polymerization as well as ethylene/1-hexene copolymerization in combined with Me2Si(η3-C13H8)(η1-NtBu)TiMe2 (1) at 0 °C. The modification with SiCl4 improved the catalytic activity. The improvement was clearer in ethylene/1-hexene copolymerization than in propylene polymerization. The number average molecular weight (Mn) of polypropylenes increased linearly against the polymerization time regardless the cocatalyst used to give polymers with narrow molecular weight distribution (Mw/Mn < 1.32), indicating the living nature of the catalytic systems. Thus, propagation rate constant (kp) and the number of active centers (C*) were evaluated from Mn and the number of polymer-chains. When the zirconia was modified with SiCl4, the kp value decreased and the C* increased. The latter effect was more significant to enhance the catalytic activity.  相似文献   

11.
The compositional heterogeneity of ethylene-1-hexene copolymers synthesized with various types of supported catalysts, namely, the titanium-magnesium catalyst TiCl4/MgCl2 and the zirconocene catalyst SiO2(MAO)/Me2Si(Ind)2ZrCl2, is studied via the method of successive self-nucleation-annealing (SSA) with the use of differential scanning calorimetry. On the basis of the data on the temperatures of individual peaks on SSA curves, the thickness of lamellas composed of macromolecules with a certain degree of short-chain branching is estimated. The copolymer synthesized with the zirconocene catalyst has a narrower range of fusion and does not contain large lamellas composed of molecules with a low degree of short-chain branching. With the use of the broadness index, it is shown that the copolymer synthesized with the zirconocene catalyst has a more uniform distribution of the comonomer than does the copolymer synthesized with the titanium-magnesium catalyst. For the copolymers synthesized with the titanium-magnesium catalyst, the compositional heterogeneity increases with an increase in the content of 1-hexene.  相似文献   

12.
A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for the impregnation of TiCl4 and rac-Et(Ind)2ZrCl2. The prepared rac-Et(Ind)2ZrCl2/TiCl4/MAO(methylaluminoxane)/SMB catalyst was applied to the ethylene-hexene copolymerization under the conditions of variable Al(MAO)/Zr ratio and fixed Al(TEA, triethylaluminum)/Ti ratio. The effect of Al(MAO)/Zr ratio on the physical properties and chemical composition distributions of ethylene-hexene copolymers produced by a rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst was investigated. The catalytic activity of rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB was steadily increased with increasing Al(MAO)/Zr ratio from 200 to 500. The ethylene-hexene copolymer produced with Al(MAO)/Zr = 300, 400, and 500 showed two melting points at around 110 °C and 130 °C, while that produced with Al(MAO)/Zr = 200 showed one melting point at 136 °C. The number of chemical composition distribution (CCD) peaks was increased from 4 to 7 and the short chain branches of ethylene-hexene copolymer were distributed over lower temperature region with increasing Al(MAO)/Zr ratio. The lamellas in the copolymer were distributed over lower temperature region and the small lamellas in the copolymer were increased with increasing Al(MAO)/Zr ratio. The rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst preferably produced a ethylene-hexene copolymer with non-blocky sequence ([EHE]) with increasing Al(MAO)/Zr ratio.  相似文献   

13.
A qualitative model for polymerisation of propylene with a MgCl2-supported TiCl4 Ziegler-Natta catalyst is developed. A series of polymerisation with increasing external electron donor/Ti ratio is performed and the polymers are analysed with GPC, 13C NMR and DSC. The model explains the trends in isotacticity and isotactic sequence length based on an equilibrium reaction of the electron donor, which is either coordinated next to an active site or extracted to the solution by the cocatalyst AlR3. Different rates for propagation and termination reactions when the donor is present or absent are used to explain the trends in activity and molar mass. The possibilities for a quantitative model and parameter estimation are discussed.  相似文献   

14.
Vaporization of MgCl2 and other metal halides results in monomeric gas-phase species. Cocondensation of these species with organic diluents such as heptane yields highly activated solids which are precursors to MgCl2 supported “high-mileage” catalysts for olefin polymerization. These catalysts, prepared by treatment with TiCl4 followed by standard activation with aluminum alkyls display high activity for ethylene and propylene polymerization. MgCl2 can also be evaporated into neat TiCl4 to give a related catalyst. The concentration of MgCl2 in the diluent affects catalyst properties as does the nature of the diluent. TiCl3, 3TiCl3 · AlCl3, VCl3 and other metal halides are subject to similar activation.  相似文献   

15.
Titanosilicalite TS-1 catalyses oxidation of light (methane, ethane, propane and n-butane) and normal higher (hexane, heptane, octane and nonane) alkanes to give the corresponding isomeric alcohols and ketones. The oxidation of higher alkanes proceeds in many cases with a unique regioselectivity. Thus, in the reaction with n-heptane the CH2 groups in position 3 exhibited a reactivity 2.5 times higher than those of the other methylene groups. This selectivity can be enhanced if hexan-3-ol is added to the reaction mixture, the 3-CH2/2-CH2 ratio becoming 10. It is assumed that the unusual selectivity in the oxidation of n-heptane (and other higher alkanes) is due to steric hindrance in the catalyst cavity. As a result, the catalytically active species situated on the catalyst walls can only easily react with certain methylenes of the alkane, which is adsorbed in the cavity taking U-shape (hairpin) conformations.  相似文献   

16.
The aging of the MgCl2/dioctyl phthalate (DOP) or ethyl benzoate (EB)/TiCl4 catalyst was studied. Because of the strong complexation of DOP with the catalyst, only a small fraction of DOP was extracted by cocatalyst triethylaluminium (TEA) during aging, resulting in converting some highly isospecific sites into aspecific ones. No change of the overall number of sites was detected. EB, on the other hand, could be readily removed by TEA, resulting in a large increase in aspecific sites. Clustering of those sites facilitated catalyst deactivation.  相似文献   

17.
Cationic polymerization of isobutylene (IB) in a mixture of methylene dichloride (CH2Cl2) and n-hexane (n-Hex) was conducted by using H2O as initiator, TiCl4 as co-initiator in the presence of strong external electron pair donor (ED), such as pyridine (Py), dimethylacetamide (DMA) or triethylamine (TEA). The effects of ED concentration, TiCl4 concentration, solvent polarity, polymerization temperature (T) and time on IB polymerization, molecular weight (MW) and molecular weight distribution (MWD, Mw/Mn) of polyisobutylene (PIB) products were investigated. The relative amount of polymer formed via uncontrolled initiation by conventional active species (I) decreased with increasing the solvent polarity, TiCl4 concentration and ED concentration in the polymerization. The desirable polymerization of IB with apparent absence of chain transfer reactions could be obtained by H2O/TiCl4 initiating system in the presence of ED under the appropriate reaction conditions. The external electron pair donors and TiCl4 did specially play important and effective roles on polymerization.  相似文献   

18.
A series of Re/Ga2O3/WO3/ZrO2 catalysts were prepared by the impregnation method. The crystalline structure, redox, and acid site distribution of the catalysts were characterized by X-ray powder diffraction, temperature-programmed reduction of H2, and temperature-programmed desorption of NH3. Their catalytic performance for n-hexane isomerization was studied. The results showed that the addition of Re greatly affected the redox properties and the acid site distribution of the catalysts. Owing to the presence of Re, n-hexane isomerization was catalyzed by metal and acid sites, and thus the conversion of n-hexane and the selectivity for 2,2-dimethylbutane were significantly increased. Under the conditions of 195 °C, 1.0 MPa, LHSV = 1.0 h−1, and n(H2)/n(C6) = 2.0, the conversion of n-hexane over 1.0%Re/1.0%Ga2O3/WO3/ZrO2 is 84.8%, and the selectivities for 2,2-dimethylbutane, i-hexane, and cracking products (C5-) are 20%, 97.7%, and 2.1%, respectively. The catalyst is stable during 150 h operation.  相似文献   

19.
Three kinds of MgCl2‐supported trivalent titanocene catalyst (Cat. 1: Cp2TiCl2AlCl2/MgCl2, Cat. 2: CpCp*TiCl/MgCl2, Cat. 3: Cp2TiCl/MgCl2) were prepared and tested for propylene polymerization. It was found that Cat. 1, combined with ordinary alkylaluminum as cocatalyst, produced PP containing 31.8 wt % of isotactic PP in fairly good yield. On the other hand, Cats. 2 and 3 hardly showed any activity. The effects of diisopropyldimethoxysilane (DIPDMS) on isospecificity of the Cat. 1 also were investigated. The isotactic index (I.I.) of PP was improved drastically by the addition of DIPDMS as external donor and reached the value as high as 98.4%, even in the absence of any internal donors. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3355–3359, 2000  相似文献   

20.
The one-pot cyclopropanation of styrene using ClnAlEt3−n (Et2AlCl, EtAlCl2, AlCl3) and carboxylic esters in the presence of Cp2ZrCl2 as catalyst gives rise to alkoxycyclopropanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号