首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(crotonic acid-co-2-acrylamido-2-methyl-1-propanesulfonic acid) [P(CrA-co-AMPS)] (44.22:55.78) copolymer was prepared in N,N-dimethylformamide solution using the benzoyl peroxide (Bz2O2) as initiator. Cu(II), Ni(II) and Co(II) chelates of the copolymer were prepared and the formation constants of each complex were determined by the mole-ratio method using UV-vis spectroscopy. UV-vis studies showed that the complex formation tendency increased in the followed order: Cu(II) > Ni(II) > Co(II). The copolymer and its metal chelates were characterized by FTIR, TGA, X-ray diffraction and SEM analysis. Also, in vitro antimicrobial activity of the polymers were tested on various bacteria, and yeast.  相似文献   

2.
Copolymers of N-isopropylacrylamide (NIPAAm) and itaconic acid (IA) having various compositions were synthesized using free radical solution polymerization in 1,4-dioxane at 50 °C with α,α′-azobisisobutyronitrile (AIBN) as initiator. The structures of the copolymers were confirmed by Fourier transform infrared (FTIR) spectroscopic technique. The copolymer compositions were determined by conductometric and potentiometric methods from the inflection points in the acid-base titration curves and by FTIR spectroscopy through recorded analytical absorption bands for NIPAAm (1620 cm−1 for CO stretching of secondary amides) and for IA (1704 cm−1 for CO stretching) units, respectively. Monomer reactivity ratios of IA (F1)-NIPAAm (F2) pair were estimated using the Finemann-Ross, the inverted Finemann-Ross, the Kelen-Tüdós and the extended Kelen-Tüdós graphical methods. The values ranged from 0.40 to 0.60 for r1 and from 1.20 to 1.90 for r2, depending on the conversion percentage, calculation methods of monomer reactivity ratios and determination methods of copolymer compositions. In all cases, r1r2 < 1 and r1 < r2 indicate the random distribution of the monomers in the final copolymers and the presence of higher amount of NIPAAm units in the copolymer than that in the feed, respectively.  相似文献   

3.
The novel methacrylic monomer, 4-nitro-3-methylphenyl methacrylate (NMPM) was synthesized by reacting 4-nitro-3-methylphenol dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine as a catalyst. The homopolymer and copolymers of NMPM with glycidyl methacrylate having different compositions were synthesized by free radical polymerization in EMK solution at 70 ± 1 °C using benzoyl peroxide as free radical initiator. The homopolymer and the copolymers were characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The solubility tests were tested in various polar and non-polar solvents. The molecular weight and polydispersity indices of the copolymers were determined using gel permeation chromatography. The glass transition temperature of the copolymers increases with increase in NMPM content. The thermogravimetric analysis of the polymers performed in air showed that the thermal stability of the copolymer increases with NMPM content. The copolymer composition was determined using 1H NMR spectra. The monomer reactivity ratios were determined by the application of conventional linearization methods such Fineman-Ross (r1 = 1.862, r2 = 0.881), Kelen-Tudos (r1 = 1.712, r2 = 0.893) and extended Kelen-Tudos methods (r1 = 1.889, r2 = 0.884).  相似文献   

4.
The free-radical copolymerization of two N-substituted acrylamide monomers, the ionic AMPS (2-acrylamido-2-methyl-1-propanesulfonic acid) and the non-ionic HEAm (2-hydroxyethylacrylamide) is presented. Despite bearing similar polymerizable functionalities, HEAm is more reactive toward free-radical addition than AMPS in water. In a mixed aqueous solvent containing salt, (0.5 M LiNO3, 50 wt%) and ethanol (50 wt%), the reactivity ratio was found to be rAMPS = 0.53 and rHEAm = 1.06 indicating that copolymers with a nearly random distribution of sulfonic and hydroxy functionalities can be prepared.  相似文献   

5.
Copolymerization of acrylonitrile (AN) with itaconic acid (IA) in dimethylformamide (DMF) and DMF/water mixture was investigated at enhanced concentrations of the latter. Analysis of the copolymer composition revealed the existence of a marked penultimate unit effect with respect to radicals terminated in AN. The reactivity of IA was considerably less than that of AN, manifested as a negative reactivity ratio for the former. The rIA values ranging from −0.28 to −0.50 and rAN values ranging from 0.53 to 0.70, were obtained by Kelen-Tudo's (KT) and extended KT methods. The penultimate reactivity ratios were determined by both linear and non-linear methods. The values ranged from r1=0.009 to 0.01, r1=0.0015 to 0.0043, r2=0.54 to 0.69 and r2=0.9 to 1.03. The reactivity of AN radical towards IA decreased about twofold when the latter formed the penultimate group. The penultimate model explained an acceptable rational feed-copolymer composition profile for the whole composition range. Addition of water decreased the reactivity of IA slightly. IA caused a decrease in the apparent copolymerization rate in agreement with the observed trends in the reactivity ratios; presence of water caused a further decrease in the rate of polymerization. A statistical prediction of monomer sequences based on reactivity ratios implied that IA existed as a lone monomer unit between the long sequences of AN units.  相似文献   

6.
A series of random copolymers of N‐isopropylacrylamide (NIPAM) and sodium 2‐acrylamido‐2‐methyl‐1‐propanesulphonate (AMPS) was synthesized by free‐radical copolymerization. The content of AMPS in the copolymers ranged from 1.1 to 9.6 mol %. The lower critical‐solution temperature (LCST) of copolymers in water increased strongly with an increasing content of AMPS. The influence of polymer concentration on the LCST of the copolymers was studied. For the copolymers with a higher AMPS content, the LCST decreased faster with an increasing concentration than for copolymers with a low content of AMPS. For a copolymer containing 1.1 mol % of AMPS the LCST dropped by about 3 °C when the concentration increased from 1 to 10 g/L, whereas for a copolymer containing 9.6 mol % of AMPS the LCST dropped by about 10 °C in the concentration range from 2 to 10 g/L. It was observed that the ionic strength of the aqueous polymer solution very strongly influences the LCST. This effect was most visible for the copolymer with the highest content of AMPS (9.6 mol %) for which an increase in the ionic strength from 0.2 to 2.0 resulted in a decrease in the LCST by about 27 °C (from 55 to 28 °C), whereas for the copolymer containing 1.1 mol % of AMPS the LCST decreased only by about 6 °C (from 37 to 31 °C) when the ionic strength increased from 0.005 to 0.3. The reactivity ratios for the AMPS and NIPAM monomer pairs were determined using different methods. The values of rAMPS and rNIPAM obtained were 11.0–11.6 and 2.1–2.4, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2784–2792, 2001  相似文献   

7.
The radical copolymerization of perfluoromethylvinyl ether (PMVE) and perfluoropropylvinyl ether (PPVE) with vinylidene fluoride (VDF), initiated by tertiobutyl peroxypivalate (TBPPI) and ditertiobutyl peroxide (DTBP), respectively, are presented. The kinetics of copolymerization were investigated for each monomer from series of at least eight reactions for which the initial [VDF]0/[fluorinated vinyl ether]0 molar ratios ranged between 20/80 and 80/20. The copolymer compositions of these random-type copolymers were calculated by means of 19F NMR spectroscopy and allowed one to quantify the respective amounts of each monomeric unit in the copolymer. According to the Tidwell and Mortimer method, the reactivity ratios (ri) of both comonomers for each type of copolymerization were obtained : rVDF = 3.40 ± 0.40 and rPMVE = 0 at 74 °C; and rVDF = 1.15 ± 0.36 and rPPVE = 0 at 120 °C. Moreover, the glass transition temperatures (Tg’s) of poly(VDF-co-PMVE) and poly(VDF-co-PPVE) copolymers containing different amounts of VDF and PMVE or PPVE, were determined and the theoretical glass transition temperatures of poly(PMVE) and poly(PPVE) homopolymer were deduced.  相似文献   

8.

The new acrylamide monomer, N‐(4‐Bromophenyl)‐2‐methacrylamide (BrPMAAm) has been synthesized by reacting 4‐Bromoaniline with methacryloyl chloride in the presence of triethylamine(NR3) at 0–5°C. The radical‐initiated copolymerization of (BrPMAAm), with 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) has been carried out in dimethylformamide (DMF) solution at 70±1°C using 2,2′‐azobisisobutyronitrile (AIBN) as an initiator with different monomer‐to‐monomer ratios in the feed. The copolymers were characterized by FTIR, 1H‐ and 13C‐NMR spectroscopy. The copolymer composition was evaluated by nitrogen content (N for AMPS‐units) in polymers led to the determination of reactivity ratios. The monomer reactivity ratios for BrPMAAm (M1)‐AMPS (M2) pair were computed using the Fineman‐Ross (F‐R), Kelen‐Tüdös (KT) and Extended Kelen‐Tüdös (EKT) methods. These parameters were also estimated using a non‐linear computational fitting procedure, known as reactivity ratios error in variable model (RREVM). The mean sequence lengths determination indicated that the copolymer was statistically in nature. By TGA and DSC analyses, the thermal properties of the polymers have been studied. The antimicrobial effects of polymers were also tested on various bacteria, and yeast.  相似文献   

9.
Free radical copolymerizations of N-isopropyl acrylamide (NIPAM) and cationic N-(3-aminopropyl) methacrylamide hydrochloride (APMH) were investigated to prepare amine-functional temperature responsive copolymers. The reactivity ratios for NIPAM and APMH were evaluated in media of different ionic strength (rNIPAM = 0.7 and rAPMH = 0.7-1.2). Phase separation behavior of the random copolymers with only 5 mol% of the APMH was found to be suppressed in pure water at temperatures up to 45 °C due to electrostatic repulsion among the cationic amine groups randomly distributed along the copolymer chain. Alternate sequential addition of PNIPAM/APMH mixtures and pure NIPAM was used to provide increased control of the location of APMH units along the chain. Consequently (close to) homo-PNIPAM block(s) were formed as evidenced by its characteristic phase transition at 33 °C. The influences of the monomer feeding time and feeding interval time to the APMH distribution were investigated to prepare copolymers with thermo-induced phase separation under physiologically relevant temperature and to determine the extent of conjugation to poly(ethylene oxide).  相似文献   

10.
The radical copolymerisation in solution of vinylidene fluoride (or 1,1-difluoroethylene (VDF)) with hexafluoropropylene (HFP) initiated by di-tert-butyl peroxide is presented. A series of eight copolymerisation reactions was investigated with initial [VDF]o/[HFP]o molar ratios ranging from 5.0/95.0 to 85.2/14.8. Both co-monomers copolymerised in this range of copolymerisation. Moreover, only VDF homopolymerised in these conditions. The copolymer compositions of these random-type copolymers were calculated by means of 19F NMR spectroscopy which allowed the respective amount of each monomeric unit in the copolymer to be quantified. The Tidwell and Mortimer method led to the assessment of the reactivity ratios, ri, of both co-monomers showing a higher incorporation of VDF in the copolymer (rHFP = 0.12 ± 0.05 and rVDF = 2.9 ± 0.6 at 393 K). Alfrey-Price's Q and e values of HFP were calculated to be 0.002 (from QVDF = 0.008) or 0.009 (from QVDF = 0.015) and +1.44 (versus eVDF = 0.40) or +1.54 (versus eVDF = 0.50), respectively, indicating that HFP is an electron-accepting monomer. The thermal properties of these fluorinated copolymers were also determined. Except for those containing a high amount of VDF, they were amorphous. Each showed one glass transition temperature (Tg) only, and from known laws of Tg, that of the homopolymer of HFP was assessed. It was compared with that obtained from the literature after extrapolation and is discussed.  相似文献   

11.
Styrene (S) and glycidyl methacrylate (GMA) copolymers were synthesized by atom transfer radical polymerization (ATRP) under different conditions. The effect of initiators, ligands, solvents, and temperature to the linear first-order kinetics and polydispersity index (PDI) was investigated for bulk polymerization. First-order kinetics was observed between linearly increasing molecular weight versus conversion and low polydispersities (PDI) were achieved for ethyl 2-bromo isobutyrate (EBiB) as an initiator and N,N′,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst. The copolymers with different compositions were synthesized using different in-feed ratios of monomers. Copolymers composition was calculated from 1H NMR spectra which were further confirmed by quantitative 13C{1H} NMR spectra. The monomer reactivity ratios were obtained with the help of Mayo-Lewis equation using genetic algorithm method. The values of reactivity ratios for glycidyl methacrylate and styrene monomers are rG = 0.73 and rS = 0.42, respectively.  相似文献   

12.
The methacrylate monomer, 2-[(5-methylisoxazol-3-yl)amino]-2-oxo-ethyl methacrylate (IAOEMA), was synthesized by reacting 2-chloro-N-(5-methylisoxazol)acetamide dissolved in acetonitrile with sodium methacrylate in the presence of triethylbenzylammoniumchloride (TEBAC). The free-radical-initiated copolymerization of IAOEMA, with styrene (ST) and methyl methacrylate (MMA) was carried out in dimethylsulphoxide (DMSO) solution at 65 °C using 2,2-azobisisobutyronitrile (AIBN) as an initiator with different monomer-to-monomer ratios in the feed. The monomer (IAOEMA) and copolymers were characterized by FTIR, 1H- and 13C-NMR spectral studies. The copolymer composition was evaluated by nitrogen content in polymers led to the determination of reactivity ratios. The reactivity ratios of the monomers were determined by the application of Fineman-Ross and Kelen-Tüdös methods. The analysis of reactivity ratios revealed that ST and MMA are more reactive than IAOEMA, and copolymers formed are statisticalle in nature. The molecular weights (Mw and Mn) and polydispersity index of the polymers were determined using gel permeation chromagtography. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of IAOEMA in the copolymers. The apparent thermal decomposition activation energies (Ed) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance.  相似文献   

13.
Copolymers with various contents of 4-methacryloyloxyphenyl-3′,4′-dimethoxystyryl ketone (MPDSK) and methyl methacrylate (MMA) were prepared in methyl ethyl ketone solution using benzoyl peroxide as a free radical initiator at 70 °C. Characterization of the resulting polymers was done by UV, FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The copolymer compositions were determined by 1H NMR analysis. The monomer reactivity ratios were calculated using linearisation methods such as Finemann-Ross (r1 = 0.4283 and r2 = 0.3050), Kelen-Tudos (r1 = 0.4264 and r2 = 0.2606), and extended Kelen-Tudos (r1 = 0.4022 and r2 = 0.2704) methods as well as by a non-linear error-in-variables model (EVM) method using the computer program RREVM (r1 = 0.4066 and r2 = 0.2802). The molecular weights ( and ) and the polydispersity index of the copolymers were determined by gel permeation chromatography. The thermal stability of the copolymers increases with increase in concentration of MPDSK. Glass transition temperatures were determined by differential scanning calorimeter under nitrogen atmosphere. The photoreactivity of the copolymers having pendant chalcone moieties was studied in chloroform solution.  相似文献   

14.
The synthesis and the radical copolymerisation of 2-hydroperfluorooct-1-ene (HPO) with vinylidene fluoride (VDF), initiated by tertio-butyl peroxypivalate (TBPPI) at 75 °C, are presented. That fluorinated alkene (HPO) was synthesised in two steps starting from the thermal or redox telomerisation of VDF with C6F13I (after purification of the monoadduct compound by rectification) followed by a dehydroiodination in the presence of various alkalies. Their influences are discussed toward the yield of the reaction. The compositions of the resulting random-type copolymers were calculated by means of 19F NMR spectroscopy and allowed one to quantify the respective amounts of each monomeric unit in the copolymer. From the Tidwell and Mortimer method, the reactivity ratios (ri) of both comonomers for this copolymerisation were determined showing a higher incorporation of VDF: rVDF = 12.0 ± 3.0 and rF2CCHC6F13=0.9±0.4 at 74 °C.  相似文献   

15.
Copolymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS, monomer 1) with 2-hydropropyl methacrylate (HPM, monomer 2) was conducted in ethylene glycol/water (1 : 1 in weight) at 70°C. The reactivity ratios estimated from the copolymer composition at low conversion are r1 = 2.31 ± 0.25 and r2 = 11.70 ± 1.05. The azeotropic composition was found at the monomer mole ratio AMPS/HPM equal to 8/2. Viscosity of these copolymers was measured in dimethyl sulfoxide (DMSO) and DMSO/tetrahydrofuran (THF) mixed solvent at 25 ± 0.05°C. Polyelectrolyte behavior was observed for all the copolymers, even in the mixed solvent containing 65 wt % of THF. The reduced viscosity at constant polymer concentration decreased with increasing THF content in the mixed solvent. The copolymers having AMPS repeat units more than 42 mol % precipitated in the mixed solvent when the THF was beyond 68 wt %. The viscosity reduction and precipitation in the copolymer solutions with increasing THF can be attributed to the dipole–dipole attraction between ion-pairs formed in less-polar medium. This is helpful in understanding the volume phase transition in highly charged hydrogels caused by mixing solvents. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1433–1438, 1997  相似文献   

16.
Copolymerization of an excess of methyl methacrylate (MMA) relative to 2-hydroxyethyl methacrylate (HEMA) was carried out in toluene at 80 °C according to both conventional and controlled Ni-mediated radical polymerizations. Reactivity ratios were derived from the copolymerization kinetics using the Jaacks method for MMA and integrated conversion equation for HEMA (rMMA = 0.62 ± 0.04; rHEMA = 2.03 ± 0.74). Poly(ethylene glycol) α-methyl ether, ω-methacrylate (PEGMA, Mn = 475 g mol−1) was substituted for HEMA in the copolymerization experiments and reactivity ratios were also determined (rMMA = 0.75 ± 0.07; rPEGMA ∼ 1.33). Both the functionalized comonomers were consumed more rapidly than MMA indicating the preferred formation of heterogeneous bottle-brush copolymer structures with bristles constituted by the hydrophilic (macro)monomers. Reactivity ratios for nickel-mediated living radical polymerization were comparable with those obtained by conventional free radical copolymerization. Interactions between functional monomers and the catalyst (NiBr2(PPh3)2) were observed by 1H NMR spectroscopy.  相似文献   

17.
The telomerization of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) in the presence of 2-mercaptoethanol was investigated at 80 °C in acetonitrile. In our case, the efficiency of 2-mercaptoethanol as telogen agent, with TMSPMA, was demonstrated and the transfer constant (CT) was determined. Moreover, cotelomerization of TMSPMA with perfluorodecylacrylate (PFDA) using various PFDA contents was investigated in order to obtain α-hydroxy oligomers with statistical copolymer-type main chains bearing trimethoxysilyl and perfluoro pendant chains. Until 10 mol% PFDA, no phase separation occured. In this composition, rTMSPMA and rPFDA reactivity ratios were calculated, thus showing a tendency for a statistical distribution of the monomer units in the copolymer.  相似文献   

18.
Effect of nanoclay on the kinetics of atom transfer radical bulk homo- and copolymerization of styrene (St) and methyl methacrylate (MMA) initiated with CCl3-terminated poly (vinyl acetate) macroinitiator at 90 °C was investigated. CuCl/PMDETA was used as a catalyst system. Results showed that nanoclay significantly enhances the homopolymerization rate of MMA. It was attributed to the activated conjugated CC bond of MMA monomer via interaction between the carbonyl group of MMA monomer and the hydroxyl moiety (AlOH) of nanoclay as well as to the effect of nanoclay on the dynamic equilibrium between the active (macro)radicals and dormant species. Homopolymerization rate of St (a noncoordinative monomer with nanoclay) decreased slightly in the presence of nanoclay. It could be explained by inserting of a portion of macroinitiator into the clay galleries, where no sufficient St monomer exists due to the low compatibility or interaction of St monomer with nanoclay to react with the macroinitiator. Controlled/living characteristic of all the reactions were confirmed by GPC results. More reliable reactivity ratios of the St and MMA in the presence of nanoclay were calculated by using the cumulative average copolymer composition at the moderate to high conversion to be rSt = 0.290 ± 0.082, rMMA = 0.443 ± 0.093 (extended Kelen-Tudos method) and rSt = 0.293 ± 0.071, rMMA = 0.447 ± 0.080 (Mao-Huglin method). Results indicated that the rate of incorporation of MMA comonomer into the copolymer increases in the presence of nanoclay, verifying the existence of interaction between the carbonyl group of MMA comonomer and the hydroxyl moiety of nanoclay. It was found that in the presence of nanoclay, tendency of the random copolymerization of St and MMA toward an alternating copolymerization increases.  相似文献   

19.
Copolymerization of styrene (St) and butadiene (Bd) with nickel(II) acetylacetonate [Ni(acac)2]-methylaluminoxane (MAO) catalyst was investigated. Among the metal acetylacetonates [Mt(acac)x] examined, Ni(acac)2 showed a high activity for the copolymerization of St and Bd giving copolymers having high cis-1,4-microstructure in Bd units in the copolymer. The effect of alkylaluminum as a cocatalyst on the copolymerization of St and Bd with the Ni(acac)2-MAO catalyst was observed, and MAO was found to be the most effective cocatalyst for the copolymerization. The monomer reactivity ratios for the copolymerization of St and Bd with the Ni(acac)2-MAO catalyst were determined to be rSt = 0.07 and rBd = 3.6. Based on the obtained results, it was presumed that the random copolymers with high cis-1,4-microstructure in Bd units could be synthesized with the Ni(acac)2-MAO catalyst without formation of each homopolymer. The polymerization mechanism with the Ni(acac)2-MAO catalyst was also discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3838–3844, 1999  相似文献   

20.
The feasibility of radical copolymerization of β-pinene and methyl acrylate (MA) was clarified for the first time. The monomer reactivity ratios were evaluated by Fineman-Ross, Kelen-Tudos and non-linear methods, respectively. The obtained values were rβ-pinene ∼ 0 and rMA ∼ 1.3, indicating that the copolymerization led to polymers rich in methyl acrylate units and randomly alternated by single β-pinene unit. The addition of Lewis acid Et2AlCl to the AIBN-initiated copolymerization enhanced the incorporation of β-pinene. Furthermore, the possible controlled copolymerization of β-pinene and MA was then attempted via the reversible addition-fragmentation transfer (RAFT) technique. The copolymerization (fβ-pinene = 0.1) using 1-methoxycarbonyl ethyl dithiobenzoate (MEDB) as a RAFT agent gave copolymers with lower molecular weight and narrower molecular weight distribution. However, the presence of MEDB strongly retarded the copolymerization. Thus a new RAFT agent 1-methoxycarbonyl ethyl phenyldithioacetate (MEPD), which gives a less stable macroradical intermediate than MEDB, was synthesized and introduced to the copolymerization. As anticipated, a much smaller retardation was observed. Moreover, the copolymerization displayed a somewhat controlled features within a certain overall conversion (<∼40%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号