首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 894 毫秒
1.
1H NMR and IR spectroscopies were used to investigate the temperature-induced phase transition behaviour of poly(N-isopropylmethacrylamide-co-sodium methacrylate) [P(IPMAAm/MNa)] copolymers, containing in aqueous solutions negatively charged MNa units (i = 1-10 mol%), and the obtained results were compared with those obtained for poly(N-isopropylmethacrylamide) (PIPMAAm) homopolymer. For PIPMAAm/H2O solution, IR spectra indicate that the transition temperatures for the hydrophilic CO groups are slightly higher (by ∼ 2 K) in comparison with hydrophobic CH3 groups. The decreasing values of phase-separated fraction pmax and the decrescent hysteresis during gradual heating and cooling, both with increasing content of MNa units i in the copolymer, show that for copolymers with i ? 5 mol% the globular-like structures formed at temperatures above the respective LCST are rather porous and disordered with relatively low degree of polymer-polymer hydrogen bonding. While for P(IPMAAm/MNa) copolymers with i ? 5 mol% most water molecules are expelled from globular structures, for i < 5 mol% a certain portion of water (HDO) molecules is rather tightly bound in globular structures; at the same time no releasing process was detected for the bound water even for 90 h.  相似文献   

2.
The strong polar group, sulfonic acid, has successfully been introduced into ethylene/allylbenzene copolymers without degradation or crosslinking via chlorosulfonation reaction with chlorosulfonic acid as a chlorosulfonating agent in 1,1,2,2-tetrachloroethane followed by hydrolysis. The degree of sulfonation (DS) can be easily controlled by changing the ratio of chlorosulfonic acid to the pendant phenyls of the copolymer. The microstructure of sulfonated copolymers were unambiguously revealed by 1H NMR and 1H-1H COSY spectral analyses, which indicates that all the sulfonation reactions exclusively took place at the para-position of the aromatic rings. The thermal behaviors were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC data exhibit a systematic trend of melting temperature increasing with DS. TGA data of sulfonated copolymers show an increase in degradation temperature from 444 to 460 °C compared to the received copolymer. Sulfonated copolymers also show an additional minor loss of mass at approximately 261 °C, which is not observed in the received copolymer. The wetting properties of the sulfonated copolymers were also evaluated by contact angle measurement, and a notable increase in surface hydrophilicity was identified.  相似文献   

3.
Glycidyl methacrylate (GM) random copolymers with styrene and methylstyrene (in a 1:1 and 1:3 mole ratio) were synthesized by solution free radical polymerizations at 70 ± 1 °C using α,α′-azoisobutyronitrile as an initiator. The copolymer compositions were obtained using related 1H NMR spectra and the polydispersity indices of the copolymers determined using gel permeation chromatography (GPC). Both types of polymer could be modified by incorporation of the highly sterically demanding tris(trimethylsilyl)methyl substituent (Me3Si)3C-(Tsi = trisyl) through the ring opening reaction of the epoxy groups in copolymers. Chemical modification was determined by 1H NMR and infrared spectroscopies. The glass transition temperature Tg of all copolymers was determined by differential scanning calorimetry (DSC). The Tg value of the copolymers containing bulky trisyl groups was found to increase with incorporation of trisyl groups in polymer structures. The presence of trisyl groups in the polymer side chain created new macromolecules with novel modified properties and potential use as membranes for fluid separation.  相似文献   

4.
The novel methacrylic monomer, 4-nitro-3-methylphenyl methacrylate (NMPM) was synthesized by reacting 4-nitro-3-methylphenol dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine as a catalyst. The homopolymer and copolymers of NMPM with glycidyl methacrylate having different compositions were synthesized by free radical polymerization in EMK solution at 70 ± 1 °C using benzoyl peroxide as free radical initiator. The homopolymer and the copolymers were characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The solubility tests were tested in various polar and non-polar solvents. The molecular weight and polydispersity indices of the copolymers were determined using gel permeation chromatography. The glass transition temperature of the copolymers increases with increase in NMPM content. The thermogravimetric analysis of the polymers performed in air showed that the thermal stability of the copolymer increases with NMPM content. The copolymer composition was determined using 1H NMR spectra. The monomer reactivity ratios were determined by the application of conventional linearization methods such Fineman-Ross (r1 = 1.862, r2 = 0.881), Kelen-Tudos (r1 = 1.712, r2 = 0.893) and extended Kelen-Tudos methods (r1 = 1.889, r2 = 0.884).  相似文献   

5.
Styrene (S) and glycidyl methacrylate (GMA) copolymers were synthesized by atom transfer radical polymerization (ATRP) under different conditions. The effect of initiators, ligands, solvents, and temperature to the linear first-order kinetics and polydispersity index (PDI) was investigated for bulk polymerization. First-order kinetics was observed between linearly increasing molecular weight versus conversion and low polydispersities (PDI) were achieved for ethyl 2-bromo isobutyrate (EBiB) as an initiator and N,N′,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst. The copolymers with different compositions were synthesized using different in-feed ratios of monomers. Copolymers composition was calculated from 1H NMR spectra which were further confirmed by quantitative 13C{1H} NMR spectra. The monomer reactivity ratios were obtained with the help of Mayo-Lewis equation using genetic algorithm method. The values of reactivity ratios for glycidyl methacrylate and styrene monomers are rG = 0.73 and rS = 0.42, respectively.  相似文献   

6.
A new aromatic unsymmetrical diamine monomer, 1,4-(2′,4″-diaminodiphenoxy)benzene (OAPB), was successfully synthesized in three steps using hydroquinone as starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride (6FDA) and pyromellitic dianhydride (PMDA) via the conventional two-step thermal or chemical imidization method to produce a series of the unsymmetrical aromatic polyimides. The polyimides were characterized by solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X-ray diffraction studies, and thermogravimetric analysis. The polyimides obtained had inherent viscosities ranged of 0.38-0.58 dL/g, and were easily dissolved in common organic solvents. The resulting strong and flexible PI films exhibited excellent thermal stability with the decomposition temperature (at 5% weight loss) of above 505 °C and the glass transition temperature in the range of 230-299 °C. Moreover, the polymer films showed outstanding mechanical properties with the tensile strengths of 41.4-108.5 MPa, elongation at breaks of 5-9% and initial moduli of 1.15-1.68 GPa.  相似文献   

7.
Poly(ethylene terephthalate) copolymers (abbreviated as PETS) that contain bis[4-(2-hydroxyethoxy)phenyl]sulfone (BHEPS) were prepared from dimethyl terephthalate (DMT), ethylene glycol (EG) (5-95%) and BHEPS (5-95%). The compositions and microstructures of the copolyesters were determined by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, respectively. The thermal behaviors were studied over the entire range of copolymer compositions, using X-ray analysis, differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The molecular weights, optical characteristics and tensile properties of these polymers were also determined. Experimental results indicated that the copolymers had a random microstructure. The intrinsic viscosities of the copolymers ranged from 0.65 to 0.69 dL/g. The copolyesters with BHEPS of <10 mol% were crystallizable, whereas the copolyesters with BHEPS of ?10 mol% were amorphous. Incorporating BHEPS affected the glass-transition temperature (Tg) values of those polymers, from about 81 °C for PETS5 to 126 °C for PETS95. The optical transmissions exceeded 86% for λ = 400 nm for all of the amorphous polyesters. The tensile modulus and strength of the copolyesters increased with BHEPS. However, they also became brittle and their elongation at break decreased.  相似文献   

8.
1H NMR spectroscopy was applied to investigate temperature-induced phase separation in solutions of poly(N-isopropylmethacrylamide-co-acrylamide) [P(IPMAm/AAm)] random copolymers in D2O, D2O/ethanol and D2O/acetone. The NMR relaxation behaviour of water (HDO) was also examined. The effects of P(IPMAm/AAm) composition and the ethanol or acetone content in the mixed solvents on the temperature, width and extent of the phase transition as well as on the mobility of polymer segments and water molecules were characterized. For D2O solutions of the copolymers prepared with the AAm fraction in the polymerization mixture not exceeding 25 mol% 1H NMR spectra show dynamic heterogeneity of copolymer chains in mesoglobules where AAm sequences and surrounding short IPMAm sequences are hydrated and mobile, while sufficiently long IPMAm sequences are dehydrated and their mobility is strongly reduced. The obtained results are consistent with the idea that P(IPMAm/AAm) copolymer mesoglobules are rather porous and disordered.  相似文献   

9.
Thermotropic copolyesters containing an isophthalate unit and mesogenic 4, 4′-bis (ω-hydroxyalkyloxy) biphenyls (n = 3, 4, 6) with different numbers of methylene units have been synthesized by melt polymerization. The number-average molar mass (Mn) was estimated from end group analysis by 1H NMR. The copolymer compositions were also obtained from 1H NMR. The thermal behavior of the copolymers containing even-even (n = 4, 6) and odd-even (n = 3, 4) pairings has been investigated and is also compared with that of the analogous homopolymers. The copolymers exhibit reduced melting point and extending liquid crystalline range identified using polarizing microscopy and DSC. All of the obtained compounds were characterized by conventional spectroscopic methods.  相似文献   

10.
To find a certain relation between the composition of carbon functional groups of humic acids derived from liquid state 13C nuclear magnetic resonance (NMR) spectra acquired with inverse-gated decoupling (IGD), known as a quantitative pulse sequence, and that by solid-state 13C NMR with cross polarization/magic angle spinning (CPMAS) techniques, fifteen soil humic acid samples with a wide range of aromaticity were analyzed. Relationships between the proportions of humic acid carbon as alkyl, O-alkyl, and aromatic carbon assessed by the two methods could be regressed to y = ax (r = 0.932-0.956; P < 0.005), respectively. The contents of alkyl, O-alkyl, and aromatic carbon assessed by CPMAS method were larger than those found by IGD method. However, the differences between the two methods were small and exclusive regression to y = x was also significant (r = 0.775-0.941; P < 0.005). Aromaticity calculated from 13C CPMAS NMR data also did not differ significantly from those computed from 13C NMR spectra with IGD. These observations indicated the comparability of the relative content of carbon functional groups in humic acids except for carboxyl and carbonyl carbon.  相似文献   

11.
Radical copolymerizations of chlorotrifluoroethylene (CTFE) with vinyl ethers such as 2-chloroethyl vinyl ether (CEVE) and ethyl vinyl ether (EVE) were performed at 75 °C in the presence of peroxide initiator. Three copolymers were obtained and characterized by means of both NMR and elemental analysis. Then, the chlorine atoms in the side chains were converted into iodine atoms by nucleophilic substitution, which was monitored by 1H NMR spectroscopy. A series of five copolymers with different amounts of iodine atoms in the side chains were thus obtained. These copolymers exhibited molecular weight values of about 25,000 g mol−1, and the thermal analysis of the copolymers showed a starting degradation from about 220 °C. The Tg values were in the range of 34-41 °C and showed a linear dependence versus the content of iodine atoms.  相似文献   

12.
Copolymers of acrylonitrile and acrylic acid with high acrylic acid feed ratio of 43 mol% were synthesized using free radical polymerization. The architecture of copolymers was modified by regulating the dosing of more reactive comonomer-acrylic acid. 13C NMR analysis confirmed that two copolymers - one (A) containing enriched blocks of individual monomer-residues (architecture close to a block copolymer) and the second (B) having nearly random distribution of the comonomers, could be successfully synthesized. The resultant acrylic acid content was determined to be nearly 50 mol% for both the copolymers. These copolymers were converted to fine fibers by solution spinning in DMF-water system, drawn in coagulation bath, and annealed at 120 °C for 2 h. The fibers were evaluated for pH response behavior, mechanical stability, and retracting stresses. The fiber A was found to have significantly higher swelling percentage (3300-3700%), faster response, and higher stability to repeated cycling compared to fiber B. Also, Fiber A showed lower thermal shrinkage, better mechanical properties during swelling and higher retracting forces during deswelling. These results indicate that the copolymer with enriched block architecture could possibly form segregated domain structure with acrylic acid domains facilitating enhanced pH response while acrylonitrile domains providing physical crosslinks for stronger mechanical strength. The study suggests that above approach may be more useful than chemically cross-linked gel rods in producing artificial muscles with faster response and good mechanical properties.  相似文献   

13.
This paper reports the fuel cells (DMFC and PEMFC) performance using sulfonated poly(arylene ether ether nitrile) (SPAEEN) copolymers containing sulfonic acid group arranged in structurally different ways. The membrane electrode assembly (MEA) fabricated from SPAEEN containing 60 mol% of angled naphthalenesulfonic acid group (m-SPAEEN-60) had superior performance over those derived from pendent naphthalenesulfonic acid group (p-SPAEEN) or sulfonated hydroquinone (HQ-SPAEEN) in H2/air and/or DMFC conditions. For example, the current density of the MEA using m-SPAEEN-60 at 0.5 V and 2.0 M methanol was 250 mA/cm2, whereas the current densities of the MEAs using p-SPAEEN-50 and HQ-SPAEEN-56 were 185 and 190 mA/cm2, respectively. In addition, compared with the sulfonated polysulfone (BPSH-35) and Nafion membranes, the copolymer containing nitrile group showed the improved cell performance. For example, the power density of the MEA using m-SPAEEN-60 at 250 mA/cm2 and 2.0 M methanol was 125 mW/cm2, whereas the power densities of the MEAs using sulfonated polysulfone (BPSH-35) and Nafion were 115 and 113 mW/cm2, respectively. m-SPAEEN-60 showed stable cell performance during extended operation (>100 h).  相似文献   

14.
Novel photocrosslinkable degradable aromatic copolyanhydrides have been prepared by melt-polycondensation from 1,6-bis(p-carboxyphenoxy)hexane (CPH) and 4,4′-(sebacoyldioxy)dicinnamic acid (CSC) derived from 4-hydroxycinnamic acid and sebacoyl chloride. FT-IR and 1H NMR confirmed the copolymer structures. These copolymers were subsequently irradiated with a 400 W high-pressure mercury lamp (λ > 28 nm) to produce crosslinked materials. The gel yields of copolymers increased with increasing irradiation time and/or CSC contents. The photocrosslinking significantly enhanced the tensile strength at break (σb) and tensile modulus (E), but decreased the elongation at break (εb). The crosslinked CPH/CSC(25/75) film with gel content of 90% showed the highest σb of 28 MPa and E of 742 MPa. The degradation characteristics of copolymer films was investigated in a phosphate buffer solution (pH 7.2 and 10.0) at 37 °C by mass loss, molecular weight reduction by GPC and contact angle measurement. The induction period was detected for all copolyanhydrides, and the rate of degradation of copolyanhydrides was much higher than that of PCPH.  相似文献   

15.
In this study, we report a new ligand, 6-hexyloxy-3-[p-(3′,4′-dicyanophenoxy)phenyl]coumarin, and its fluorescent tetrasubstituted phthalocyanines {M[Pc(OBzCou)4], M = 2H, Zn(II), Co(II); Bz: Benzene}. The effect of the coumarin derivative on the intensity of the fluorescence spectra of the metal-free (H2Pc) and zinc phthalocyanine (ZnPc) derivatives was investigated. The change of the emission properties of both the coumarin moieties and the phthalocyanine core in the presence of the metal ion and the ring-opening reaction of the coumarin were studied by means of steady-state fluorescence spectroscopy. The radiative decay of the Pcs and the treated coumarin substituents bound to the Pcs was examined. The novel chromogenic compounds were characterized by elemental analysis, 1H NMR, 13C NMR, Maldi-TOF, IR and UV–Vis spectral data. The photophysical properties of the Pcs are extensively affected by their state of aggregation: in particular, dimerization and aggregation result in a remarkable modification of the absorption and emission bands and may induce significant quenching of the usually strong Pc fluorescence. The electronic spectra exhibit a band of coumarin identity together with characteristic Q and B bands of the phthalocyanine core.  相似文献   

16.
Neutral nickel(II) and palladium(II) complexes bearing β-ketoiminato ligand have been synthesized. The two complexes have been investigated as catalyst for the polymerization. Using methylaluminoxane (MAO) as a cocatalyst, both complexes produce vinyl-addition polynorbornenes, but palladium(II) complex displays much higher activity up to 8.0 × 107 g/(molPd h). Furthermore, both Ni(II) and Pd(II)/MAO system can efficiently copolymerize norbornene and 5-norbornene-2-yl acetate (NB-OCOMe) in moderate yields and in relatively high molecular weights. The analyses of the product by FTIR, 1H NMR and 13C NMR spectra give the verification of vinyl addition copolymer. The copolymers show narrow molecular weight distribution and good solubility in common organic solvents.  相似文献   

17.
One class of fluorescent copolyanhydrides were synthesized by melt copolycondensation of the fluorophoric diacid, p-(carboxyethylformamido)benzoic acid (CEFB), with 1,3-bis(p-carboxyphenoxy) propane (CPP). 1H NMR spectra of the copolymers confirm their chemical structures. All the copolymers can give off fluorescence with the excitation of both UV (356 nm) and visible light (470 nm). The fluorescence intensity increases with an increase in CEFB fraction. The degradation rate of the copolyanhydrides can be modulated by the polymer components, increasing with a decrease in CPP content. In addition, CEFB segments in the copolymers degraded rapider than CPP segments, resulting in an increase in CPP fraction in the degraded copolyanhydrides. Morphology change of the copolyanhydrides during degradation was also examined by SEM. It was found that the outer layers of the degraded samples erode faster than the inner layers. Fluorescence intensity of the degraded copolyanhydrides diminished with time.  相似文献   

18.
The copolymerization of 1,5-cyclooctadiene and norbornene in the presence of an electrochemically generated WCl6-based catalyst was investigated. This copolymer was isolated and characterized by 1H, and 13C NMR spectroscopy to analyse in detail the nature of homo- and heterodyad units and GPC analysis (Mn = 11200, PDI = 2.0). Homopolymerizations of 1,5-cyclooctadiene and norbornene were also studied and resulting polymers were characterized by spectroscopic methods to discuss with copolymers. Glass-transition temperatures of homo- and copolymers were determined by DSC.  相似文献   

19.
A series of poly(aryl ether benzimidazole) copolymers bearing different aryl ether linkage contents were synthesized by condensation polymerization in polyphosphoric acid (PPA) by varying the feed ratio of 4,4′-dicarboxydiphenyl ether (DCPE) to terephthalic acid (TA). As the ether unit content in the copolymer increased, the solubility of the copolymer in PPA and N,N′-dimethylacetamide/LiCl improved. For example 3–7 wt.% DMAc solution containing 2 wt.% of LiCl could be prepared from the copolymers. XRD studies revealed that the incorporation of flexible aryl ether linkages increased the chain d-spacings of the polymer backbones and decreased the crystallinity of the copolymers. Still, these copolymers having ether linkages showed reasonably good thermal/mechanical stability and high proton conductivity. For example, the copolymer with 30 mol% ether linkage had a tensile strength of 43 MPa (at 26 °C and 40% relative humidity) at an acid doping level of 7.5 mol H3PO4 and a proton conductivity of 0.098 S cm−1 (at 180 °C and 0% relative humidity) at an acid doping level of 6.6 mol H3PO4.  相似文献   

20.
Three soluble alternating conjugated copolymers, comprised of 9,9-dihexylfluorene and thiophene derivatives with/without oxadiazole side chains, were synthesized via the palladium-catalyzed Suzuki coupling reaction. The structures of the polymers were confirmed with 1H NMR and 13C NMR, and the effect of oxadiazole side chains on the thermal, optical, electrochemical and photovoltaic properties were investigated. The introduction of rigid oxadiazole side chains could benefit to improve thermal stabilities of the conjugated polymers. Cyclic voltammograms revealed that the LUMO energy levels of P2 and P3 were reduced in comparison with P1 due to the introduction of electron-deficient oxadiazole side chains, indicating that electron-injection and transporting properties have been improved. Photovoltaic cells (PVCs) were fabricated based on the blend of the as-synthesized copolymers and the fullerene acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in a 1:1 weight ratio. The maximum power conversion efficiency (PCE = 1.49%) was obtained for P3 as the electron donor under the illumination of AM 1.5, 100 mW/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号