首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Arnoldus HF  Li X  Shu J 《Optics letters》2008,33(13):1446-1448
The field lines of the Poynting vector for light emitted by a dipole with a rotating dipole moment show a vortex pattern near the location of the dipole. In the far field, each field line approaches a straight line, but this line does not appear to come exactly from the location of the dipole. As a result, the image of the dipole in its plane of rotation seems displaced. Secondly, the image in the far field is displaced as compared with the image of a source for which the field lines run radially outward. It turns out that both image displacements are the same. The displacements are of subwavelength scale, and they depend on the angles of observation. The maximum displacement occurs for observation in the plane of rotation and equals lambda/pi, where lambda is the wavelength of the light.  相似文献   

2.
Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location of the source to the observer in the far field. However, when the energy flow pattern of the radiation is resolved with an accuracy better than an optical wavelength, it turns out that the field lines are usually curved. We consider electric dipole radiation, a prime example of which is the radiation emitted by an atom during an electronic transition, and we show that the field lines of energy flow are in general curves. Near the location of the dipole, the field lines exhibit a vortex structure, and in the far field they approach a straight line. The spatial extension of the vortex in the optical near field is of nanoscale dimension. Due to the rotation of the field lines near the source, the asymptotic limit of a field line is not exactly in the radially outward direction and as a consequence, the image in the far field is slightly shifted. This sub-wavelength displacement of the image of the source should be amenable to experimental observation with contemporary nanoscale-precision techniques.  相似文献   

3.
Xin Li 《Physics letters. A》2010,374(8):1063-1067
The energy flow lines of the radiation emitted by a rotating electric dipole moment have a vortex structure near the source. The spatial extend of this vortex is well below an optical wavelength. This near-field vortex has a macroscopic effect which could be observed in the far field.  相似文献   

4.
Xin Li 《Physics letters. A》2010,374(43):4479-4482
When a small particle is illuminated by a circularly polarized laser beam, the induced electric dipole moment rotates in a plane. The flow lines of the emitted electromagnetic energy are the field lines of the Poynting vector. When the particle is embedded in a dielectric, these field lines have a vortex structure, and the rotation in the vortex has the same orientation as the rotation direction of the dipole. We show that when the embedding medium is a negative index of refraction material, the direction of rotation in the vortex is reversed.  相似文献   

5.
The field lines of energy flow of the radiation emitted by a linear dipole in free space are straight lines, running radially outward from the source. When the dipole is embedded in a medium, the field lines are curves when the imaginary part of the relative permittivity is finite. It is shown that due to the damping in the material all radiation is emitted in directions perpendicular to the dipole axis, whereas for a dipole in free space the radiation is emitted in all directions except along the dipole axis. It is also shown that some field lines in the near field form semiloops. Energy flowing along these semiloops is absorbed by the material and does not contribute to the radiative power in the far field.  相似文献   

6.
An oscillating magnetic dipole located near a perfect conductor induces a current density on the surface of the metal. We have derived an expression for this current density, and studied its field line patterns for various orientations of the dipole moment. When the dipole moment is perpendicular to the surface, the field lines are circles which run clockwise and counterclockwise. For a linear dipole oriented parallel to the surface, the field line pattern is much more complex, and it contains singular points. When the dipole moment rotates in a plane parallel to the surface, the field lines are spirals. A field line spirals inward from infinity to some given point, after which it spirals outward back to infinity. We have also considered the Poynting vector of the electromagnetic field near the surface, and we found that its field lines can have singular points or exhibit a vortex.  相似文献   

7.
We consider the transmission of electric dipole radiation through an interface between two dielectrics, for the case of a vertical dipole. Energy flows along the field lines of the Poynting vector, and in the optical near field these field lines are curves (as opposed to optical rays). When the radiation passes through the interface into a thicker medium, the field lines bend to the normal (as rays do), but the transmission angle is not related to the angle of incidence. The redirection of the radiation at the interface is determined by the angle dependence of the transmission coefficient. This near-field redistribution is responsible for the far-field angular power pattern. When the transmission medium is thinner than the embedding medium of the dipole, some energy flows back and forth through the interface in an oscillating fashion. In each area where field lines dip below the interface, an optical vortex appears just above the interface. The centers of these vortices are concentric singular circles around the dipole axis.  相似文献   

8.
Kolkıran A  Agarwal GS 《Optics letters》2012,37(12):2313-2315
We analyze the far-field resolution of apertures that are illuminated by a point dipole located at subwavelength distances. It is well known that radiation emitted by a localized source can be considered a combination of traveling and evanescent waves, when represented by the angular spectrum method. The evanescent wave part of the source can be converted to propagating waves by diffraction at the aperture; thereby it contributes to the far-field detection. Therefore one can expect an increase in the resolution of objects. We present explicit calculations showing that the resolution at the far zone is improved by decreasing the source-aperture distance. We also utilize the resolution enhancement by the near field of a dipole to resolve two closely located apertures. The results show that without the near field (evanescent field) the apertures are not resolved, whereas with the near field of the dipole the far zone intensity distribution shows improved resolution. This method eliminates the requirements of near-field techniques such as controlling and scanning closely located tip detectors.  相似文献   

9.
The interaction between a general magnetic source and a long type-II superconducting cylinder in the Meissner or mixed state is studied within the London theory. We first study the Meissner state and solve the Maxwell–London equations when the source is a magnetic monopole located at an arbitrary position. Then the field and supercurrent for a more complicated magnetic charge distribution can be obtained by superposition. A magnetic point dipole with arbitrary direction is studied in detail. It turns out that the levitation force on the dipole contains in general an angular as well as a radial component. By integration we obtain the field and supercurrent when the source is a two-dimensional monopole (a magnetically charged long thread along the axial direction), from which the results for a two-dimensional point dipole easily follow. In the latter case the levitation force points in the radial direction regardless of the orientation of the dipole. The case for a current carrying long straight wire parallel to the cylindrical axis is solved separately. The limit of ideal Meissner state is discussed in most cases. The case of mixed state is discussed briefly. It turns out that vortex lines along the axial direction and vortex rings concentric with the cylinder have no effect outside the cylinder and the levitation forces remain the same as in the case of the Meissner state.  相似文献   

10.
Acoustic waves emitted by a vortex ring moving near a circular cylinder have been studied experimentally and theoretically. The vortex rings used in the experiments had a translational speed ν0 in the range 26 ⪅ ν0 ⪅ 58 m/s and a radius of about 4·7 mm comparable in size with the cylinder radius. The acoustic pressure signals were detected by four microphones in the far field, and analyzed by digital methods. The observed pressure p obeys the scaling law pν03L−4, where L is the impact distance of the vortex path to the cylinder. The observed sound wave is of dipole radiation type, and the direction of the dipole axis rotates as the vortex position changes relative to the cylinder. The direction of the dipole axis is related to that of the normal to the plane of the vortex ring. The instantaneous resultant force exerted on the cylinder by the vortex motion has also been examined, and the magnitude and the direction determined experimentally as a function of time. The theory of vortex sound predicts that the wave profile is proportional to the second time derivative of the volume flux (of a hypothetical potential flow around the cylinder) through the vortex ring. The observed scaling law and dipole directivity of the pressure are in good agreement with the theoretical predictions. The pressure profiles are calculated by using the observed vortex motion. These profiles also agree well with the observed ones, confirming the validity of the theory.  相似文献   

11.
Ultraintense laser pulses propagating in near-critical density plasmas generate magnetic dipole vortex structures. In the region of decreasing plasma density, the vortex expands both in forward and lateral directions. The magnetic field pressure pushes electrons and ions to form a density jump along the vortex axis and induces a longitudinal electric field. This structure moves together with the expanding dipole vortex. The background ions located ahead of the electric field are accelerated to high energies. The energy scaling of ions generated by this magnetic vortex acceleration mechanism is derived and corroborated using particle-in-cell simulations.  相似文献   

12.
The scattering of a monopole wavefield by the flow of a potential vortex is considered by using a scheme due to Lighthill. The problem is two-dimensional, the monopole being a line source adjacent to a parallel line vortex. The cases of large and small separation of vortex and source are examined in detail. The far field density is asymptotically estimated in both limits. A quadrupole type radiation field is calculated in each case.  相似文献   

13.
We study the ground-state phases of two-dimensional rotating spin–orbit coupled spin-1/2 Bose–Einstein condensates (BECs) in a gradient magnetic field. The competition between gradient magnetic field, spin–orbit coupling and rotation leads to a variety of ground-state phase structures. In the weakly rotation regime, as the increase of gradient magnetic field strength, the BECs experiences a phase transition from the unstable phase to the single vortex-line phase. The unstable phase presents the vortex lines structures along the off-diagonal direction. With magnetic field gradient strength increasing, the number of vortex lines changes accordingly. As the magnetic field gradient strength increases further, the single vortex-line phase with a single vortex line along the diagonal direction is formed. The phase diagram shows that the boundary between the two phases is linear with the relative repulsion λ≥1 and is nonlinear with λ<1. In the relatively strong rotation regime, in addition to the unstable phase and the single vortex-line phase, the vortex-ring phase is formed for the strong magnetic field gradient and rapid rotation. The vortex-ring phase shows the giant and hidden vortex structures at the center of ring. The strong magnetic field gradient makes the number of the vortices around the ring unchanged.  相似文献   

14.
Allowance for the linear Ekman friction has been found to ensure a threshold (in rotation frequency) realization of the linear dissipative–centrifugal instability and the related chiral symmetry breaking in the dynamics of Lagrangian particles, which leads to the cyclone–anticyclone vortex asymmetry. An excess of the fluid rotation rate ω0 over some threshold value determined by the fluid eigenfrequency ω (i.e., ω0 > ω) is shown to be a condition for the realization of such an instability. A new generalization of the solution of the Karman problem to determine the steady-state velocity field in a viscous incompressible fluid above a rotating solid disk of large radius, in which the linear Ekman friction was additionally taken into account, has been obtained. A correspondence of this solution and the conditions for the realization of the dissipative–centrifugal instability of a chiral-symmetric vortex state and the corresponding cyclone–anticyclone vortex asymmetry has been shown. A generalization of the well-known spiral velocity distribution in an “Ekman layer” near a solid surface has been established for the case where the fluid rotation frequency far from the disk ω differs from the disk rotation frequency ω0.  相似文献   

15.
开式轴流风扇气动噪声预测   总被引:1,自引:0,他引:1  
本文采用LES/FW-H的匹配方法,研究了开式轴流风扇内部旋涡流动特征及其与叶片表面干涉引起的气动噪声之间的联系,同时进行了远场噪声预测,探讨了叶轮不同表面辐射噪声时的频谱分布特征.研究结果表明,开式轴流风扇吸力面附近形成的叶尖涡和前缘分离涡在吸力面叶片表面相应位置形成大压力波动,形成主要噪声源;叶片吸力面的辐射噪声可以通过改善吸力面附近的旋涡流动来降低;低速轴流叶轮由叶轮壁面辐射的噪声以宽频成分为主.  相似文献   

16.
吴静  周志为  闫旭 《物理学报》2015,64(19):194101-194101
电力线谐波辐射特指在电离层或磁层中观测到的来源于地面电力系统输电线的电磁波辐射, 其在电磁场时频功率谱中表现为400 Hz至5 kHz范围内, 频率间隔为50/100 Hz或60/120 Hz 的平行谱线, 已成为近地空间环境的一种人为污染源. 对于该现象的形成机理尚缺乏定量研究. 本文研究了非理想导电大地上方由电偶极子源产生的电磁场在分层各向异性电离层中的传播模型, 提出了一种新的求解方法, 有效解决了编程计算中的数值溢出问题, 并利用已有解析解对所提方法进行了验证. 在此基础上, 利用实际电力线、大地、电离层的相关参数, 研究了偶极子源频率、电离层下边界高度、大地电导率、地磁场方向等对电力线谐波辐射在电离层中的传播的影响. 结果表明, 频率等于地-电离层波导导波模截止频率时透入电离层的电力线谐波辐射强度更大; 谐波电流一定时, 大地电导率小的地区, 电力线谐波辐射的功率更大; 电力线谐波辐射在电离层中沿地磁场方向传播. 本文所得结果有益于阐释电力线谐波辐射现象的形成机理.  相似文献   

17.
The purpose of this study is to understand the aerodynamic noise source distribution around a rotating fan blade by measuring the noise signal and velocity field around the blade. The local noise-level distribution over the fan blade is measured by microphone arrays, and the flow field is visualized by smoke and phase-averaged PIV measurement. The noise source distribution is examined by cross-correlation analysis between noise signal and velocity fluctuation. It is found that the noise source is located near the rotating fan blade, especially around leading and trailing edges. The separation and reattachment of flow are observed near the leading edge, and the tip vortices and vortex shedding are found near the trailing edge. The cross-correlation distribution of the noise signal and the radial velocity fluctuation shows large magnitude in the correlated regions, which indicates the noise generation by the formation of vortex structure around the blade.  相似文献   

18.
The possibility of the formation of a vortex in thin film due to the field of magnetic dipole moment when a point dipole is vertically approaching the surface of a thin film is discussed. Calculations are performed for certain discrete values of the critical position of the point dipole for creating the vortex in the thin film and the equilibrium positions of the vortex, both of which depend on the strength of magnetic dipole moment. The creation of a new single vortex in the thin film causes an abrupt change in the vertical force.  相似文献   

19.
Effective acoustic source positions (observed from the far field) have been located for the broad band noise from a cylindrical rod rotated about its mid-point by measuring the cross spectral density function of two microphone signals on the axis of rotation. Local source position Strouhal numbers could thereby be calculated. On the basis of acoustic power measurements it was demonstrated that the noise may be normalized on a rod tip Strouhal number basis, and that the velocity exponent is nearly constant when plotted against this parameter. The results indicate that vortex shedding like that for stationary cylinders in a cross flow (occurring along the outer 13 of the rod for a rotational speed of 1000 rpm) is responsible for the high levels of broad band noise in a major peak region. Sources influenced by harmonics of the rod passing frequency were found for frequencies lower than the vortex shedding ones. At higher frequencies broad band noise was found to be emitted from the rod tip area.  相似文献   

20.
In this paper we study the flow lines defined by integral curves of the current field Im ψ* ∇ ψ associated to a complex scalar field ψ near a general phase vortex. This study naturally leads to the center–focus problem. Sufficient conditions for spiral behavior of the flow lines near a vortex in terms of the Lyapunov numbers are given.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号