首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let ${\mathfrak{g}=W_1}$ be the p-dimensional Witt algebra over an algebraically closed field ${k=\overline{\mathbb{F}}_q}$ , where p > 3 is a prime and q is a power of p. Let G be the automorphism group of ${\mathfrak{g}}$ . The Frobenius morphism F G (resp. ${F_\mathfrak{g}}$ ) can be defined naturally on G (resp. ${\mathfrak{g}}$ ). In this paper, we determine the ${F_\mathfrak{g}}$ -stable G-orbits in ${\mathfrak{g}}$ . Furthermore, the number of ${\mathbb{F}_q}$ -rational points in each ${F_\mathfrak{g}}$ -stable orbit is precisely given. Consequently, we obtain the number of ${\mathbb{F}_q}$ -rational points in the nilpotent variety.  相似文献   

2.
Suppose that n is even. Let ${\mathbb{F}_2}$ denote the two-element field and ${\mathbb{Z}}$ the set of integers. Bent functions can be defined as ± 1-valued functions on ${\mathbb{F}_2^n}$ with ± 1-valued Fourier transform. More generally we call a mapping f on ${\mathbb{F}_2^n}$ a ${\mathbb{Z}}$ -bent function if both f and its Fourier transform ${\widehat{f}}$ are integer-valued. ${\mathbb{Z}}$ -bent functions f are separated into different levels, depending on the size of the maximal absolute value attained by f and ${\widehat{f}}$ . It is shown how ${\mathbb{Z}}$ -bent functions of lower level can be built up recursively by gluing together ${\mathbb{Z}}$ -bent functions of higher level. This recursion comes down at level zero, containing the usual bent functions. In the present paper we start to study bent functions in the framework of ${\mathbb{Z}}$ -bent functions and give some guidelines for further research.  相似文献   

3.
Given a Lie group G with a bi-invariant metric and a compact Lie subgroup K, Bittencourt and Ripoll used the homogeneous structure of quotient spaces to define a Gauss map ${\mathcal{N}:M^{n}\rightarrow{\mathbb{S}}}$ on any hypersupersurface ${M^{n}\looparrowright G/K}$ , where ${{\mathbb{S}}}$ is the unit sphere of the Lie algebra of G. It is proved in Bittencourt and Ripoll (Pacific J Math 224:45–64, 2006) that M n having constant mean curvature (CMC) is equivalent to ${\mathcal{N}}$ being harmonic, a generalization of a Ruh–Vilms theorem for submanifolds in the Euclidean space. In particular, when n = 2, the induced quadratic differential ${\mathcal{Q}_{\mathcal{N}}:=(\mathcal{N}^{\ast}g)^{2,0}}$ is holomorphic on CMC surfaces of G/K. In this paper, we take ${G/K={\mathbb{S}}^{2}\times{\mathbb{R}}}$ and compare ${\mathcal{Q}_{\mathcal{N}}}$ with the Abresch–Rosenberg differential ${\mathcal{Q}}$ , also holomorphic for CMC surfaces. It is proved that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ , after showing that ${\mathcal{N}}$ is the twisted normal given by (1.5) herein. Then we define the twisted normal for surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ and prove that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ as well. Within the unified model for the two product spaces, we compute the tension field of ${\mathcal{N}}$ and extend to surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ the equivalence between the CMC property and the harmonicity of ${\mathcal{N}.}$   相似文献   

4.
5.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

6.
We prove Haag duality property of any translation invariant pure state on ${\mathcal B}= \otimes _{{\mathbb {Z}}}\!M_d({\mathbb {C}}), \;d \ge 2$ , where $M_d({\mathbb {C}})$ is the set of $d \times d$ dimensional matrices over the field of complex numbers. We also prove a necessary and sufficient condition for a translation invariant factor state to be pure on ${\mathcal B}$ .  相似文献   

7.
We consider the groups ${\mathrm{Diff }}_\mathcal{B }(\mathbb{R }^n)$ , ${\mathrm{Diff }}_{H^\infty }(\mathbb{R }^n)$ , and ${\mathrm{Diff }}_{\mathcal{S }}(\mathbb{R }^n)$ of smooth diffeomorphisms on $\mathbb{R }^n$ which differ from the identity by a function which is in either $\mathcal{B }$ (bounded in all derivatives), $H^\infty = \bigcap _{k\ge 0}H^k$ , or $\mathcal{S }$ (rapidly decreasing). We show that all these groups are smooth regular Lie groups.  相似文献   

8.
The Dodd–Jensen Covering Lemma states that “if there is no inner model with a measurable cardinal, then for any uncountable set of ordinals X, there is a ${Y\in K}$ such that ${X\subseteq Y}$ and |X| = |Y|”. Assuming ZF+AD alone, we establish the following analog: If there is no inner model with an ${\mathbb {R}}$ –complete measurable cardinal, then the real core model ${K(\mathbb {R})}$ is a “very good approximation” to the universe of sets V; that is, ${K(\mathbb {R})}$ and V have exactly the same sets of reals and for any set of ordinals X with ${|{X}|\ge\Theta}$ , there is a ${Y\in K(\mathbb {R})}$ such that ${X\subseteq Y}$ and |X| = |Y|. Here ${\mathbb {R}}$ is the set of reals and ${\Theta}$ is the supremum of the ordinals which are the surjective image of ${\mathbb {R}}$ .  相似文献   

9.
In this paper we classify the complete rotational special Weingarten surfaces in ${\mathbb{S}^2 \times \mathbb{R}}$ and ${\mathbb{H}^2 \times \mathbb{R}}$ ; i.e. rotational surfaces in ${\mathbb{S}^2 \times \mathbb{R}}$ and ${\mathbb{H}^2 \times \mathbb{R}}$ whose mean curvature H and extrinsic curvature K e satisfy H = f(H 2 ? K e ), for some function ${f \in \mathcal{C}^1([0,+\infty))}$ such that f(0) = 0 and 4x(f′(x))2 < 1 for any x ≥ 0. Furthermore we show the existence of non-complete examples of such surfaces.  相似文献   

10.
Let ${\beta(\mathbb{N})}$ denote the Stone–?ech compactification of the set ${\mathbb{N}}$ of natural numbers (with the discrete topology), and let ${\mathbb{N}^\ast}$ denote the remainder ${\beta(\mathbb{N})-\mathbb{N}}$ . We show that, interpreting modal diamond as the closure in a topological space, the modal logic of ${\mathbb{N}^\ast}$ is S4 and that the modal logic of ${\beta(\mathbb{N})}$ is S4.1.2.  相似文献   

11.
Let ${\mathcal{F}_\lambda}$ be a generalized flag variety of a simple Lie group G embedded into the projectivization of an irreducible G-module V λ . We define a flat degeneration ${\mathcal{F}_\lambda^a}$ , which is a ${\mathbb{G}^M_a}$ variety. Moreover, there exists a larger group G a acting on ${\mathcal{F}_\lambda^a}$ , which is a degeneration of the group G. The group G a contains ${\mathbb{G}^M_a}$ as a normal subgroup. If G is of type A, then the degenerate flag varieties can be embedde‘d into the product of Grassmannians and thus to the product of projective spaces. The defining ideal of ${\mathcal{F}_\lambda}$ is generated by the set of degenerate Plücker relations. We prove that the coordinate ring of ${\mathcal{F}_\lambda^a}$ is isomorphic to a direct sum of dual PBW-graded ${\mathfrak{g}}$ -modules. We also prove that there exists bases in multi-homogeneous components of the coordinate rings, parametrized by the semistandard PBW-tableux, which are analogs of semistandard tableaux.  相似文献   

12.
We prove that if a polynomial vector field on ${\mathbb{C}^2}$ has a proper and non-algebraic trajectory analytically isomorphic to ${\mathbb{C}^{\ast}}$ all its trajectories are proper, and except at most one which is contained in an algebraic curve of type ${\mathbb{C}}$ all of them are of type ${\mathbb{C}^{\ast}}$ . As corollary we obtain an analytic version of Lin?CZa?denberg Theorem for polynomial foliations.  相似文献   

13.
In this paper, we obtain sufficient and necessary conditions for a simply connected Riemannian manifold (M n , g) to be isometrically immersed into ${\mathbb{S}^m \times \mathbb{R}}$ and ${\mathbb{H}^m \times \mathbb{R}}$ .  相似文献   

14.
In this work, we investigate linear codes over the ring ${\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}$ . We first analyze the structure of the ring and then define linear codes over this ring which turns out to be a ring that is not finite chain or principal ideal contrary to the rings that have hitherto been studied in coding theory. Lee weights and Gray maps for these codes are defined by extending on those introduced in works such as Betsumiya et al. (Discret Math 275:43–65, 2004) and Dougherty et al. (IEEE Trans Inf 45:32–45, 1999). We then characterize the ${\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}$ -linearity of binary codes under the Gray map and give a main class of binary codes as an example of ${\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}$ -linear codes. The duals and the complete weight enumerators for ${\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}$ -linear codes are also defined after which MacWilliams-like identities for complete and Lee weight enumerators as well as for the ideal decompositions of linear codes over ${\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}$ are obtained.  相似文献   

15.
We prove that for any open Riemann surface ${\mathcal{N}}$ , natural number N ≥ 3, non-constant harmonic map ${h:\mathcal{N} \to \mathbb{R}}$ N?2 and holomorphic 2-form ${\mathfrak{H}}$ on ${\mathcal{N}}$ , there exists a weakly complete harmonic map ${X=(X_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ with Hopf differential ${\mathfrak{H}}$ and ${(X_j)_{j=3,\ldots,{\sc N}}=h.}$ In particular, there exists a complete conformal minimal immersion ${Y=(Y_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ such that ${(Y_j)_{j=3,\ldots,{\sc N}}=h}$ . As some consequences of these results (1) there exist complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of ${\mathbb{CP}^{{\sc N}-1}}$ in general position. (2) There exist complete non-proper embedded minimal surfaces in ${\mathbb{R}^{\sc N},}$ ${\forall\,{\sc N} >3 .}$   相似文献   

16.
This paper concerns with a class of reaction-diffusion systems with triangular diffusion matrix on the unbounded domain ${\mathbb{R}^{n}}$ . The system with diagonal diffusion matrix has been studied by J. D. Avrin and F. Rothe in [4]. We prove two new results about uniform boundedness to solutions of such class of reaction-diffusion systems in ${BUC(\mathbb{R}^{n})}$ , the space of bounded uniformly continuous functions from ${\mathbb{R}^{n}}$ to ${\mathbb{R}}$ .  相似文献   

17.
In this paper, we study surfaces in Lorentzian product spaces ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ . We classify constant angle spacelike and timelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ . Moreover, complete classifications of spacelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ and timelike surfaces in ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ with a canonical principal direction are obtained. Finally, a new characterization of the catenoid of the 3rd kind is established, as the only minimal timelike surface with a canonical principal direction in Minkowski 3–space.  相似文献   

18.
For a sequence $\underline{u}=(u_n)_{n\in \mathbb{N }}$ of integers, let $t_{\underline{u}}(\mathbb{T })$ be the group of all topologically $\underline{u}$ -torsion elements of the circle group $\mathbb{T }:=\mathbb{R }/\mathbb{Z }$ . We show that for any $s\in ]0,1[$ and $m\in \{0,+\infty \}$ there exists $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has Hausdorff dimension $s$ and $s$ -dimensional Hausdorff measure equal to $m$ (no other values for $m$ are possible). More generally, for dimension functions $f,g$ with $f(t)\prec g(t), f(t)\prec \!\!\!\prec t$ and $g(t)\prec \!\!\!\prec t$ we find $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has at the same time infinite $f$ -measure and null $g$ -measure.  相似文献   

19.
Let ${\mathbb{Q}^3}$ be the moduli space of oriented circles in the three dimensional unit sphere ${\mathbb{S}^3}$ . Given a natural complex structure such space becomes a three dimensional complex manifold, with a M?bius invariant Hermitian metric h of type (2, 1). Up to M?bius transformations, all geodesics with respect to the Lorentz metric g = Re(h) on ${\mathbb{Q}^3}$ are determined to form a one-parameter family of circles on a helicoid in a space form ${\mathbb{R}^3, \mathbb{H}^3}$ or ${\mathbb{S}^{3}}$ , resp. We show also that any two oriented circles in ${\mathbb{S}^3}$ are connected by countably infinitely many geodesics in ${\mathbb{Q}^3}$ .  相似文献   

20.
We construct a simply connected complete bounded mean curvature one surface in the hyperbolic 3-space ${\mathcal {H}^3}$ . Such a surface in ${\mathcal {H}^3}$ can be lifted as a complete bounded null curve in ${\rm {SL}(2,\mathbb {C})}$ . Using a transformation between null curves in ${\mathbb {C}^3}$ and null curves in ${\rm {SL}(2,\mathbb {C})}$ , we are able to produce the first examples of complete bounded null curves in ${\mathbb {C}^3}$ . As an application, we can show the existence of a complete bounded minimal surface in ${\mathbb {R}^3}$ whose conjugate minimal surface is also bounded. Moreover, we can show the existence of a complete bounded immersed complex submanifold in ${\mathbb {C}^2}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号