首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the linear theory of elasticity, Saint-Venant's principle is used to justify the neglect of edge effects when determining stresses in a body. For isotropic materials, the validity of this is well established. However for anisotropic and composite materials, experimental results have shown that edge effects may persist much farther into the material than for isotropic materials and as a result cannot be neglected. This paper further examines the effects of material anisotropy on the exponential decay rate for stresses in a semi-infinite elastic strip. A linearly elastic semi-infinite strip in a state of plane stress/strain subject to a self-equilibrated end load is considered first for a specially orthotropic material and then for the general anisotropic material. The problem is governed by a fourth-order elliptic partial differential equation with constant coefficients. In the former case, just a single dimensionless material parameter appears, while in the latter, only three dimensionless parameters are required. Energy methods are used to establish lower bounds on the actual stress decay rate. Both analytic and numerical estimates are obtained in terms of the elastic constants of the material and results are shown for several contemporary engineering materials. When compared with the exact stress decay rate computed numerically from the eigenvalues of a fourth-order ordinary differential equation, the results in some cases show a high degree of accuracy. In particular, for strongly orthotropic materials, an asymptotic estimate provides extremely accurate estimates for the decay rate. Results of the type obtained here have several important practical applications. For example, they provide physical insight into the mechanical testing of anisotropic and laminated composite structures (including the off-axis tension test), are useful in assessing the influence of fasteners, joints, etc. on the behavior of composite structures and allow for tailoring a material with specific properties to ensure that local stresses attenuate at a desired rate.  相似文献   

2.
3.
The determination of the appropriate boundary conditions for a two-dimensional theory of elastic flat plates (and shells) consistent with the expected order of accuracy of the theory is both critical and challenging. The reciprocal theorem of elasticity will be applied in a novel way to obtain the appropriate stress boundary conditions for plate bending accurate to all order (with respect to the usual dimensionless thickness parameter) for plates of general edge geometry and loading. Kirchhoff’s two contracted stress boundary conditions are shown to be consistent with a leading term (thin plate) approximation theory, but the more general results obtained herein are needed for higher order theories.  相似文献   

4.
A reformulation is made of the classical von Mises theory of plane strain rigid-perfect plasticity. The adoption of an anisotropic piecewise linear yield criterion results in two sets of field equations, each equivalent to the classical vibrating string equation. The development of the theory is routine. Certain properties of discontinuous stress and velocity fields are discussed, but the complete development of this aspect of the theory is not given here.By way of example, the complete solution of the classical rigid punch problem is presented.  相似文献   

5.
This study documents the first attempt to apply the singular boundary method (SBM), a novel boundary only collocation method, to two-dimensional (2D) elasticity problems. Unlike the method of fundamental solutions (MFS), the source points coincide with the collocation points on the physical boundary by using an inverse interpolation technique to regularize the singularity of the fundamental solution of the equation governing the problems of interest. Three benchmark elasticity problems are tested to demonstrate the feasibility and accuracy of the proposed method through detailed comparisons with the MFS, boundary element method (BEM), and finite element method (FEM).  相似文献   

6.
This paper presents a formulation for the solution of the steady state rosponse of a semi-infinite strip with atress-free semi-infinite edges and a time-harmonie shear and normal stress applied to the end. If the end stresses form a self-equilibrated stress state, the presence or absence of a dynainic Saint-Venant region may be examined. The mathematical analysis is based on the linear equations for generalized plane stress and are solved by a biorthogonal eigenfunction expansion. The formulation is in terms of stresses and a displacement related auxiliary variable of the same differential order as the stress. Numerical solutions are presented as an indication of frequency and stress mode shape dependency.  相似文献   

7.
Summary The problem of dominant mode scattering by a symmetrically placed impedance strip in a parallel plane waveguide is solved exactly. The mode matching technique used is considerably more straightforward than the Weiner-Hopf method and is applicable to a number of other problems.  相似文献   

8.
9.
Bending analysis of micro-sized beams based on the Bernoulli-Euler beam theory is presented within the modified strain gradient elasticity and modified couple stress theories. The governing equations and the related boundary conditions are derived from the variational principles. These equations are solved analytically for deflection, bending, and rotation responses of micro-sized beams. Propped cantilever, both ends clamped, both ends simply supported, and cantilever cases are taken into consideration as boundary conditions. The influence of size effect and additional material parameters on the static response of micro-sized beams in bending is examined. The effect of Poisson’s ratio is also investigated in detail. It is concluded from the results that the bending values obtained by these higher-order elasticity theories have a significant difference with those calculated by the classical elasticity theory.  相似文献   

10.
IntroductionInthetheoryofplanedeformationsoflinearelastotatics,Saint-Venant'sprincipleplaysanimportantroleinbothoftheoryandpracticalapplicahonsandisoftenusedtojushfyapproximationthatneglectedgeeffects.ForhomogenousisotropicmaterialthevalidityofSaintVenant'sprincipleiswellestablished.However,forhomogenousanisotropicmaterial,experimentalresultshaveshownthatedgeeffectsmaypersistmuchfartherintotheinteriorofthebodythanforisotropicmaterialandasaresultcannotbeneglected.Asweknow,theelasticityproblem…  相似文献   

11.
A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples (i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.  相似文献   

12.
13.
14.
This paper presents an extension of a boundary element method to fatigue growth analysis of mixed-mode cracked plane elastic bodies. The method consists of the non-singular displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity element due to the author. In the boundary element implementation the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. Crack growth is simulated with an incremental crack extension analysis based on the modified maximum strain energy density criterion. In numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the boundary element method. Crack growth is simulated by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characters of some related elements are adjusted according to the manner in which the boundary element method is implemented. Some numerical results of fatigue growth in a plane elastic plate with a center-inclined crack under uniaxial cyclic loading are given.  相似文献   

15.
The problem of a steady forced convection thermal boundary-layer driven by a power-law shear is investigated. The search for similarity solutions reduces the problem to a couple of ordinary differential equations containing three parameters: the exponent of the decaying exterior velocity profile, the exponent of the power-law prescribing the thermal condition on the wall and Prandtl number. The effects of these parameters on the existence and form of similarity solution are investigated and the functional dependence of the local Nusselt number on these parameters is reported and discussed. An analysis of the assumptions usually accepted to derive similarity solutions is also reported in order to show the range of values of the exterior velocity power-law exponent for which such solutions may exist.  相似文献   

16.
Using an available analytic solution for instantaneous plane strain compression of a plastically anisotropic strip between two parallel plates the strain rate intensity factor is found assuming Hill’s quadratic yield criterion. The distribution of material properties is uniform. The effect of parameters characterizing plastic anisotropy of the strip on the magnitude of the strain rate intensity factor is demonstrated. A possibility to replace the strain rate intensity factor with the plastic work rate intensity factor is discussed. Singular behavior of the plastic spin in the vicinity of the friction surface is revealed and discussed.  相似文献   

17.
The paper deals with asymptotic behavior of viscoplastic solutions in the vicinity of maximum friction surfaces under plane strain conditions. The definition of maximum friction surfaces is that the friction stress is equal to the shear yield stress at sliding. The constitutive equations of the viscoplastic model adopted include a saturation stress. It is shown that it is possible to choose parameters of the viscoplastic model such that the regime of sliding is possible at maximum friction surfaces. In this case solutions are singular in the vicinity of such surfaces. Because of this feature of solutions, the viscoplastic model chosen possesses a smooth transition of qualitative behavior between rigid perfectly plastic and viscoplastic solutions, and this may prove to be advantageous for some applications.  相似文献   

18.
The composite effects of viscosity, porosity, buoyancy parameter, thermal conductivity ratio and non-Darcy effects of Brinkman friction and Forscheimmer quadratic drag on the mixed convection boundary layer flow past a semi-infinite plate in a fully-saturated porous regime are theoretically and numerically investigated using Keller’s implicit finite-difference technique and a double-shooting Runge-Kutta method. The Brinkman Forcheimer-extended Darcy model is implemented in the hydrodynamic boundary layer equation. The effects of the various non-dimensional thermofluid parameters, viz Grashof number, Darcy number, and Forchheimer number, and also porosity, thermal conductivity and viscosity parameters on the velocity and temperature fields are discussed. Computations for both numerical schemes are made where possible and found to be in excellent agreement.  相似文献   

19.
The bending problem for an arbitrarily outlined thin plane with mixed boundary conditions is solved. A technique based on the methods of potentials and balancing loads is proposed for constructing Green’s function for the Germain-Lagrange equation. This technique ensures high accuracy of approximate solutions, which is checked against Levi’s solution for rectangular plates __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 104–112, May 2006.  相似文献   

20.
The stress-intensity factors for a semi-infinite plane crack with a wavy front are determined when the crack faces are subjected to normal and shearing tractions. The results are derived using asymptotic methods and are valid to O(2) where =A/1; A is the amplitude and is the wavelength of the wavy front. The normal and shearing tractions are in the form of line loads parallel to the crack front.The results are then used to evaluate, in a qualitative manner, the growth characteristics of a semi-infinite plance crack with a wavy front under combined mode loading. This provides a possible explanation of crack front segmentation observed experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号