首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relaxation processes that occur in ensembles of coupled silicon nanocrystals are described by a quantitative model that takes into account the energy transfer between them during exciton migration. This model is used to study the formation of singlet oxygen during the photoexcitation of silicon nanocrystals in porous silicon layers under various external conditions. It is experimentally found that, upon fine milling of as-deposited porous silicon films, the photoluminescence decay time increases despite an increase in the concentration of point defects. The photosensitized activity of ensembles of silicon nanocrystals degrades monotonically during their photostimulated oxidation. These experimental results agree completely with the conclusions of the model and are explained by a decrease in the number of exciton migration ways between nanocrystals when the granule size of a porous silicon powder decreases and by an increase in the efficiency of nonradiative recombination during the photostimulated oxidation of the nanocrystals. Our data indicate that nanocrystalline silicon is a promising material for the methods of nontoxic photodynamic therapy of oncological diseases.  相似文献   

2.
Electron paramagnetic resonance spectroscopy is used to determine the concentration of excited (singlet) molecular oxygen photosensitized by silicon nanocrystals. The generation of singlet oxygen in the porous silicon layers is studied quantitatively at various oxygen pressures and exciting light intensities with the use of the technique proposed. The experimental results indicate that silicon nanoclusters as the photosensitizers of singlet oxygen are promising for biomedical applications.  相似文献   

3.
Optical and radio-frequency physical effects that allow spin manipulations at room temperature using magnetic resonance, effects of anticrossing levels in the ground and excited quadruplet spin states, and cross-relaxation resonances in ensembles of spin color centers in silicon carbide micro- and nanocrystals have been demonstrated. A scanning device where ensembles of spin centers placed on the tip of the cantilever probe of an atomic force microscope serve as sensors of magnetic and temperature fields with a submicron spatial resolution has been considered.  相似文献   

4.
The discovery of unique magnetooptical properties of paramagnetic centers in silicon carbide, which make it possible to control spins of small arrays of centers of atomic sizes to single centers at room temperatures, using the techniques of optical detection of the magnetic resonance, posed a number of problems, among which one of the main ones is the creation of conditions under which spin relaxation effects are minimized. As studies of properties of spin nitrogen-vacancy centers in diamond showed, the main contribution to spin relaxation is made by the interaction with nitrogen donors, being a major impurity in diamond. A similar problem exists for silicon carbide, since nitrogen donors are also basic background impurities. The objective of this work is to study the spatial distribution of the spin density of nitrogen donors in two basic silicon carbide polytypes, i.e., 4H-SiC and 6H-SiC, to use this information for minimizing the interaction of nitrogen donors with paramagnetic centers in silicon carbide. The results of the study are analyzed by magnetic resonance methods; the spin density distribution on the nearest coordination spheres of nitrogen donors occupying carbon sites in silicon carbide is determined. It is concluded that paramagnetic centers in the 4H-SiC polytype, including silicon vacancies, can be more stable to the interactions with unpaired donor electrons, since electrons are not localized on the coordination sphere closest to the paramagnetic center in this case.  相似文献   

5.
Light emitting porous silicon samples with different porosities, i.e. crystalline sizes, were produced from the low level doped p‐type silicon wafers by the anodization process. The effects of strong phonon confinement, redshift and broadening, were found on the O(Γ) phonon mode of the Raman spectra recorded at non‐resonant excitation condition using a near infrared 1064 nm laser excitation wavelength. Similarly, the blueshift of the photoluminescence peak was observed by reducing the crystalline sizes. Vibrational and optical findings were analysed within the existing models of confinement on the vibrational and electronic states of silicon nanocrystals. Since the energy of the photoluminescence peak of small nanocrystals also depends on the oxygen content on the surface of nanocrystals, the surface oxidation states were examined using infrared and energy dispersive spectroscopy. The partial coverage of the surface of nanocrystals was found due to the sample exposure to air. As a consequence, the photoluminescence energy did not increase as would be expected from the quantum confinement model. These results further indicate that the oxygen passivation along with the quantum confinement determines the electronic states of the silicon nanocrystals in porous silicon. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Photoluminescence is used to study the effect of the granule size in porous silicon on the generation efficiency of the excited state of molecular oxygen (1O2) on the surface of silicon nanocrystals. The generation efficiency is found to increase as the granule size becomes smaller than 100 nm, which can be explained by a change in the conditions of exciton diffusion along a network of silicon nanocrystals.  相似文献   

7.
The methods of infrared absorption spectroscopy and electron paramagnetic resonance are used for studying the effect of adsorption of NO2 molecules, which are strong acceptors of electrons, on the electronic and optical properties of silicon nanocrystals in mesoporous silicon layers. It is found that the concentration of free charge carriers (holes) in silicon nanocrystals, which exhibits a nonmonotonic dependence on the NO2 pressure, sharply increases in the presence of these molecules. At the same time, a monotonic increase in the concentration of dangling silicon bonds (Pb1 centers) is observed. A microscopic model proposed for explaining this effect presumes the formation of donor-acceptor pairs P + b1 -(NO2)? on the surface of nanocrystals, which ensure an increase in the hole concentration in nanocrystals, as well as Pb1 centers, which are hole-trapping centers. The proposed model successfully explains a substantial increase in photoconductivity (by two or three orders of magnitude) in the layers of porous silicon in the presence of NO2 molecules; the increment in the concentration of free charge carriers is detected within an order of magnitude of this quantity. The results can be used in designing electronic and luminescence devices based on silicon nanocrystals.  相似文献   

8.
The (29)Si spin-lattice relaxation in porous silica-based material 1, doped by ions Mn(2+) at a Si/Mn ratio of 3.5, is non-exponential, independent of magic-angle spinning (MAS) rates and governed by direct dipolar coupling between electron and nucleus where an electron relaxation time is estimated to be about 10(-8)s. In the absence of mutual energy-conserving spin flips (spin diffusion) in 1, the (29)Si T(2) time increases linearly with spinning rates. None was observed in diamagnetic porous system 2. The unexpected (29)Si T(2) dependence has been interpreted in terms of the large bulk magnetic susceptibility (BMS) effects. It has been shown that editing the (29)Si Hahn-echo MAS NMR spectra eliminates wide lines, belonging to (29)Si nuclei in the proximity of paramagnetic centers, and reduces the BMS broadenings in sideband patterns for nuclei remote from these centers.  相似文献   

9.
We review the polarization properties of photoluminescence (PL) in nanocrystals (NCs) from both theoretical and experimental points of view. We show that, under linearly polarized excitation, NCs emit partly polarized light owing to their uniaxial structure or their anisotropic shape. In elongated NCs, the anisotropy may have two origins, the electronic confinement or the effect of depolarizing field created by the light-induced charges on the interfaces. Results of polarization studies in porous silicon are presented. They are explained by the shape of the Si NCs. Experiments in CdSe NCs reveal the fine structure of the excitonic levels and show evidence of the enhancement of the electron-hole exchange energy with decreasing NC size. Spin orientation in wurtzite-type NCs is achieved by optical pumping with circularly polarized light. The effect of a magnetic field on the degree of circular polarization and the mechanisms of spin relaxation are discussed. Results in large-size NCs are presented.  相似文献   

10.
This paper describes the first investigations of how the intensities of various time-resolved components of the luminescence from porous silicon relax with time. A paradoxical correlation is observed between the macro-and microtemporal relaxation of luminescence from porous silicon under pulsed photoexcitation: namely, a relative increase in the rate of macrorelaxation for the slower components of the luminescence. Spectral investigations show that the difference in the rates of fatigue relaxation “tiredness” is maximum at the long-wavelength edge of the luminescence band. We propose a model that allows us to explain the observed effects starting from the assumption that photoexcitations drift toward radiative recombination centers. Fiz. Tverd. Tela (St. Petersburg) 39, 1165–1169 (July 1997)  相似文献   

11.
The special features of the interaction of silicon dangling bonds on the surface of porous silicon with oxygen molecules were studied by EPR spectroscopy. The effectiveness of magnetic dipole-dipole interaction between these defects and oxygen molecules decreased as the size of sample granules diminished, because the concentration of defects then increased and, as a consequence, the contribution of their mutual dipole-dipole relaxation grew.  相似文献   

12.
A series of porous silicon samples prepared at different etching parameters, namely etchant composition, etching time and current density, was investigated as substrates for surface-enhanced Raman scattering (SERS). Silver nanostructures were deposited on porous silicon by immersion plating method and Rhodamine 6G was used as analyte. The relation between the etching parameters, morphology of porous silicon surface and its SERS efficiency after silver deposition is examined. We show that a high HF content in the etchant allows the formation of a film with close-packed silver nanocrystals, which possess strong surface enhancement properties.  相似文献   

13.
We have used the density functional method to model the atomic and electronic structure of diamond nanocrystals passivated by hydrogen atoms and either not containing defects or containing a single [NV] center. We have shown that in all cases, after relaxation the nanocrystals are formed as diamond-like structures. We have studied the features of the electronic structure of the nanocrystals. We have analyzed in detail the mechanism for the formation of energy levels in the bandgap due to [NV] centers. We have established that the optical absorption and fluorescence spectra for the [NV] centers are mainly associated with transitions of electrons between the highest occupied β orbitals (projection of the electron spin equal to +1/2) and lower unoccupied α orbitals (projection of the electron spin equal to −1/2). The results on the localization and energy position of the states in the bandgap match data obtained for the [NV] center in bulk diamond. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 1, pp. 86–92, January–February, 2007.  相似文献   

14.
Silicon nanocrystals dispersed in water have been used to photosensitize the generation of active oxygen. The photosensitizing efficiency has been estimated through the quenching of the exciton photoluminescence of silicon nanocrystals. Experiments have revealed a strong (up to 80%) decrease in the number of cancer mouse fibroblast cells when they come into contact with photoexcited silicon nanocrystals. The obtained results show that the use of silicon nanocrystals for biomedical applications, in particular, for photodynamic therapy of cancer, is feasible.  相似文献   

15.
The formation of SiC nanocrystals of the cubic modification in the process of high-temperature carbonization of porous silicon has been analyzed. A thermodynamic model has been proposed to describe the experimental data obtained by atomic-force microscopy, Raman scattering, spectral analysis, Auger spectroscopy, and X-ray diffraction spectroscopy. It has been shown that the surface energy of silicon nanoparticles and quantum filaments is released in the process of annealing and carbonization. The Monte Carlo simulation has shown that the released energy makes it possible to overcome the nucleation barrier and to form SiC nanocrystals. The processes of laser annealing and electron irradiation of carbonized porous silicon have been analyzed.  相似文献   

16.
A model of rapid thermal oxidation of silicon in dry oxygen based on the reaction of volume oxidation is constructed. It is assumed that the coefficient of oxygen diffusion for silicon dioxide decreases because of internal compressive stress, which is at a maximum near the SiO2-Si interface; as the distance from the interface increases, this stress decreases according to the time-dependent exponential law because of viscoelastic relaxation from the value of the diffusion coefficient for strained oxide to that for fused quartz. The characteristic relaxation time of the coefficient of oxygen diffusion in silicon dioxide correlates with the relaxation time of internal stress in silicon dioxide films on silicon and with the relaxation time of the refraction index. Because the refraction index is related to the density of silicon dioxide, we arrive at the conclusion that the relaxation of the diffusion coefficient is related not only to the relaxation of internal mechanical stress, but also to the relaxation of the density of silicon dioxide.  相似文献   

17.
Photoluminescence (PL) from silicon nanocrystals (Si-nc) prepared from pulverised porous silicon and embedded in undoped (SOG) or phosphorus-doped spin-on-glass (SOD) solutions was studied. Effects of rapid thermal annealing on the PL was also investigated. A strong room temperature PL signal was observed at 710 nm due to the recombination of electron-hole pairs in Si-nc and the PL maximum shifts to the blue region as the phosphorus concentration in the spin on glass increases. However, the rapid thermal annealing process (30 s, 900°C) quenches the PL response. These results suggest that for Si-nc/SOG (SOD) the surface termination is efficient but high phosphorus doping of Si-nc is detrimental to the PL.  相似文献   

18.
Based on X-ray diffraction analysis, Auger spectroscopy, and Raman scattering, it is shown that carbonization of porous silicon at temperatures of 1200–1300°C results in formation of silicon carbide nanocrystals 5–7 nm in size. The growth of 3C-SiC nanocrystals of fixed size d proceeds as follows. Silicon nanocrystals with d = 3–7 nm pass into the liquid phase, thereby effectively participating in the growth of silicon carbide. After the size of a crystallite has achieved a critical value determined by the equality of its melting point and environmental temperature, the crystallite solidifies and virtually ceases to grow. As a result, a nanocrystalline Si-SiC-amorphous SiC heterostructure is obtained.  相似文献   

19.
Er离子注入的富硅SiO2MOS-LED的可见和红外电致发光特性   总被引:1,自引:0,他引:1  
通过Er离子和Si离子注入并结合高温退火制备了Er掺杂的富硅SiO2薄膜以及ITO/SiON/富硅SiO2:Er/Si MOS结构电致发光器件.研究了富Si浓度的变化对Er3+离子掺杂的电致发光器件的发光性能和传导特性的影响.发现不同Si含量对Er3+离子的不同能级的电致发光会产生不同作用.在富Si量小于5%的条件下,...  相似文献   

20.
We carry out a comparison between the luminescence spectra (photo-and x-ray luminescence) of porous silicon and disperse SiO2, which by its physical characteristics is most similar to oxide films on porous silicon. The photoluminescence of porous silicon was also investigated using fluorescence (excitation by a nitrogen laser) and metallographic microscopes. We found that the natures of the luminescence centers of porous silicon and disperse SiO2 are identical. A porous layer on single-crystal silicon ensures the creation of a highly branched surface of oxide film. Luminescence centers are located on its inner (as viewed from the porous silicon) surface. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 2, pp. 247–251, March–April, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号