首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Silver(I) complexes of selenones, [LAgNO3] and [AgL2]NO3 (where L is imidazolidine-2-selenone or diazinane-2-selenone and their derivatives) have been prepared and characterized by elemental analysis, IR and NMR (1H, 13C and 107Ag) spectroscopy. An upfield shift in the C=Se resonance of selenones in 13C NMR and a downfield shift in N-H resonance in 1H NMR are consistent with selenium coordination to silver(I). In 107Ag NMR, the AgNO3signal is deshielded by 450-650 ppm on coordination to selenones. Greater upfield shifts in 13C NMR were observed for [LAgNO3] compared to [AgL2]NO3complexes, whereas the opposite trend was observed for 1H and107Ag NMR chemical shifts.  相似文献   

2.
The structure of 1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene-silver(I) chloride, 1, has been determined to be a monomer with weak head-to-tail H...Cl interactions in the solid state. A multinuclear NMR study using a (13)C(carbene) labeled derivative, 1((13)C), exhibits (13)C-(107,109)Ag coupling in solution. Further, the solid state CP/MAS NMR parameters, including the principal components of the chemical shift tensors for both the (13)C and (109)Ag centers, have been determined. With the aid of DFT calculations, the orientation of the chemical shift tensors have been assigned.  相似文献   

3.
Cadmium(II) complexes of thiones and thiocyanate, [(>C=S)2Cd(SCN)2], have been prepared and characterized by IR and NMR spectroscopy. An upfield shift in the >C=S resonance of thiones in the 13C NMR and downfield shift in N–H resonance in 1H NMR are consistent with sulfur coordination to cadmium(II). The presence of ν(N–H) of thiones in IR spectra of the complexes indicates the thione forms of the ligands in the solid state; some contribution of the thiolate form was observed in one complex. The appearance of a band around 2100 cm?1 in IR and a resonance around 132 ppm in 13C NMR indicates the binding of thiocyanate to cadmium(II).  相似文献   

4.
Complexation of Ag(+) with captopril, 1-[(2S)-3-mercapto-2-methylpropionyl]-L-proline, has been studied by (1)H and (13)C-NMR spectroscopy. The equilibrium constants for the trans to cis isomers of captopril bound to Ag(+) were measured by (1)H NMR spectroscopy. It is observed that the trans isomer of the drug binds more strongly to Ag(+) between pH 5 and 8, as shown by the broadening of the trans isomer's resonances in (13)C NMR spectra on complexation. A monodentate complexation of the trans captopril with Ag(+) via the thiol site is proposed based on the solid-state NMR and IR data. A superior antimicrobial activity is exhibited by the Cap-Ag(I) complex compared to captopril ligand itself against Heterotrotropic Plate Counts (HPC), Pseudomonas aeruginosa and Fecal streptococcus bacteria.  相似文献   

5.
Both the conformation and flexibility of four mixed oxathia crown ethers and their Ag(I) and Pd(II) complexes were studied by (1)H NMR (delta, J, NOE, T(1)), (13)C NMR, dynamic (1)H NMR spectroscopy and molecular modelling. The stoichiometry and stability constants of the complexes were determined from corresponding Job's plots in the case of Ag(I) complexes as the interchange between free and complexed states was fast on the NMR timescale; interchange for the Pd(II) complexes was sufficiently slow such that distinct sub-spectra were observable for the free and complexed states. In all cases where complexation was observed, 1 : 1 complexes were formed. Global minima structures determined from the modelling studies were analysed with respect to the barriers to ring interconversion, the flexibility of the species in solution and the preferred complexation of Ag(I) and Pd(II) to the sulfur atoms of the crown ethers.  相似文献   

6.
Thallium(III) complexes with nitrogen donor ligands constitute an interesting field in coordination chemistry. Phenanthroline is an extremely stiff organic ligand. The stability constants of its coordination compounds with Tl(III) have been investigated in aqueous solution by potentiometer1. 205Tl NMR technique has provided an effective method to study the thallium(III) solution chemistry. Thallium(III) coordination chemistry has attracted considerable attention recently for its ric…  相似文献   

7.
For the first time, coordination geometry and structure of metal binding sites in biologically relevant systems are studied using chemical shift parameters obtained from solid-state NMR experiments and quantum chemical calculations. It is also the first extensive report looking at metal-imidazole interaction in the solid state. The principal values of the (113)Cd chemical shift anisotropy (CSA) tensor in crystalline cadmium histidinate and two different cadmium formates (hydrate and anhydrate) were experimentally measured to understand the effect of coordination number and geometry on (113)Cd CSA. Further, (13)C and (15)N chemical shifts have also been experimentally determined to examine the influence of cadmium on the chemical shifts of (15)N and (13)C nuclei present near the metal site in the cadmium-histidine complex. These values were then compared with the chemical shift values obtained from the isostructural bis(histidinato)zinc(II) complex as well as from the unbound histidine. The results show that the isotropic chemical shift values of the carboxyl carbons shift downfield and those of amino and imidazolic nitrogens shift upfield in the metal (Zn,Cd)-histidine complexes relative to the values of the unbound histidine sample. These shifts are in correspondence with the anticipated values based on the crystal structure. Ab initio calculations on the cadmium histidinate molecule show good agreement with the (113)Cd CSA tensors determined from solid-state NMR experiments on powder samples. (15)N chemical shifts for other model complexes, namely, zinc glycinate and zinc hexaimidazole chloride, are also considered to comprehend the effect of zinc binding on (15)N chemical shifts.  相似文献   

8.
The new complex of Ag(I) with an organoselenium compound was synthesized. The 2 : 1 (silver : ligand) stoichiometry of the complex and chelating mode of the hetero-selenium ligand have been considered on the basis of elemental analyses, IR, Raman, 1H and 13C NMR, and thermogravimetric data. The IR spectrum of the complex supported two sites of coordination (selenium and nitrogen atoms of quinoline moiety). The bidentate ligand was bound to selenium via oxygen atoms of the carboxylate group. The complex demonstrated the non-electrolyte nature. Nano-scale range of Ag(I) complex has been estimated according to X-ray powder diffraction, scanning electron microscope and transmission electron microscopy.  相似文献   

9.
Ag(I), Pd(II) and Pt(II) complexes of 5-methoxy-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione (LH(2)OCH(3)) have been synthesized and characterized by elemental analysis, molar conductance, (1)H NMR, IR spectra, UV spectra and thermal analysis (TG-DTA). The components of the three complexes are [Ag(C(15)H(10)N(3)S)](6), Pd(C(15)H(10)N(3)S)(2) and Pt(C(15)H(10)N(3)S)(2).C(3)H(6)O.2H(2)O, respectively. All the complexes are nonelectrolyte and have high thermodynamic stability. The ligand may act as bidentate NS donor for Pd(II) and Pt(II) complexes, while it seems to be bidentate NS bridging via sulphur atom for Ag(I) complex. A planar quadrangular structure is proposed for Pd(II) and Pt(II) complexes and Ag(I) complex may be a hexanuclear cluster. Their interactions with bovine serum albumin (BSA) are investigated using steady state fluorescence technology. It is observed that all of them can quench the intrinsic fluorescence of BSA through static quenching procedure. The binding constants (K(A)) at different temperatures, thermodynamic parameters enthalpy changes (DeltaH) and entropy changes (DeltaS) between BSA and the compounds are calculated. Based on the values of DeltaH and DeltaS, it is judged that the main acting force of PtL(2).C(3)H(6)O.2H(2)O with BSA may be electrostatic interaction, and for the LH(2)OCH(3), Ag(6)L(6) and PdL(2), hydrophobic and electrostatic interactions may be involved in their binding processes.  相似文献   

10.
Three mixed ligand complexes of gold(I) with phosphines and selenones, [Et3PAuSe=C<]Br as analogues of auranofin (Et3PAuSR) have been prepared and characterized by elemental analysis, IR and NMR methods. A decrease in the IR frequency of the C=Se mode of selenones upon complexation is indicative of selenone binding to gold(I) via a selenone group. An upfield shift in 13C NMR for the C=Se resonance of the selenones and downfield shifts in 31P NMR for the R3P moiety are consistent with the selenium coordination to gold(I). 13C solid state NMR shows the chemical shift difference between free and bound selenone to gold(I) for ImSe and DiazSe to be ca 10 and 17?ppm respectively. Large 77Se NMR chemical shifts (55?ppm) upon complexation in the solid state for [Et3PAuDiazSe]Br compared to [Et3PAuImSe]Br (10?ppm) indicates the former to be more stable and the Au–Se bond to be stronger than in the latter complex.  相似文献   

11.
Reactions of AgI with salts of [WS(4)](2-) or [MoS(4)](2-) and with either imidazolidine-2-thione (Imt) or [1,3]diazepane-2-thione (Diap) give the complexes [WS(4)Ag(2)(Imt)(2)](n) and [MS(4)Ag(2)(Diap)(4)] [M = W or Mo]; in the case of Diap, corresponding Cu complexes can be obtained with CuCl instead of AgI. Decomposition of the Ag-Diap complexes during attempted recrystallization leads to the polymeric complex [AgI(Diap)](n). The monomeric mixed-metal Diap complexes contain edge-sharing WS(4) and AgS(4) tetrahedra, the Diap ligands being terminally bonded to Ag through sulfur. The mixed-metal W-Ag-Imt complex is a chain polymer with two different environments for the WS(4) unit and three different coordination environments for Ag, one of which is an unprecedented AgS(5) square-based pyramid; Imt ligands are terminally coordinated to Ag. [AgI(Diap)](n) has a complex polymeric chain structure with three different distorted tetrahedral environments for Ag, direct Ag-Ag bonding, both bridging and terminal I, and all Diap ligands bridging pairs of Ag atoms. All the crystal structures feature N-H[...]S or N-H[...]I hydrogen bonding. The complexes have also been characterised by infrared, UV-Vis and (1)H and (13)C NMR spectroscopy.  相似文献   

12.
63Cu NMR spectroscopic studies of copper(I) complexes with various N-donor tridentate ligands are reported. As has been previously reported for most copper(I) complexes, 63Cu NMR signals, when acetonitrile is coordinated to copper(I) complexes of these tridentate ligands, are broad or undetectable. However, when CO is bound to tridentate copper(I) complexes, the 63Cu NMR signals become much sharper and show a large downfield shift compared to those for the corresponding acetonitrile complexes. Temperature dependence of 63Cu NMR signals for these copper(I) complexes show that a quadrupole relaxation process is much more significant to their 63Cu NMR line widths than a ligand exchange process. Therefore, an electronic effect of the copper bound CO makes the 63Cu NMR signal sharp and easily detected. The large downfield shift for the copper(I) carbonyl complex can be explained by a paramagnetic shielding effect induced by the copper bound CO, which amplifies small structural and electronic changes that occur around the copper ion to be easily detected in their 63Cu NMR shifts. This is evidenced by the correlation between the 63Cu NMR shifts for the copper(I) carbonyl complexes and their nu(C[triple bond]O) values. Furthermore, the 63Cu NMR shifts for copper(I) carbonyl complexes with imino-type tridentate ligands show a different correlation line with those for amino-type tridentate ligands. On the other hand, 13C NMR shifts for the copper bound 13CO for these copper(I) carbonyl complexes do not correlate with the nu(C[triple bond]O) values. The X-ray crystal structures of these copper(I) carbonyl complexes do not show any evidence of a significant structural change around the Cu-CO moiety. The findings herein indicate that CO complexation makes 63Cu NMR spectroscopy much more useful for Cu(I) chemistry.  相似文献   

13.
Two water-soluble, silver(I) complexes showing a wide spectrum of effective antibacterial and antifungal activities, i.e., ([Ag(Hhis)].0.2EtOH)2 (1; H2his = L-histidine) and [Ag(Hpyrrld)]2 (3; H2pyrrld = (S)-(-)-2-pyrrolidone-5-carboxylic acid) were prepared. In aqueous solution 1 and 3 were present as dimers, whereas in the solid state they were polymers. Crystallization of 1 by slow evaporation and/or vapor diffusion gave water-insoluble crystals of [Ag(Hhis)]n (2) showing modest antimicrobial activities. The complex 1 in the solid state is a polymer formed by intermolecular hydrogen-bonding interactions between dimeric [Ag(Hhis)]2 cores, while 2 is a different polymer without a core complex. X-ray crystallography revealed that 2 was a left-handed helical polymer consisting of a bent, 2-coordinate silver(I) atom bonding to the Namino atom of one Hhis- ligand and the N pi atom of a different Hhis- ligand. Of particular note is the fact that Ocarboxyl atoms do not participate in the coordination. X-ray crystallography also revealed that 3 was a left-handed helical polymer formed by self-assembly of dimeric [Ag(Hpyrrld)]2 cores with an intramolecular metal(I)-metal(I) interaction (Ag-Ag distance, 2.9022(7) A). The FT-IR and the solid-state 13C and 15N NMR spectra showed that the dimeric core of 1 was formed through Ag-N bonds, while that of 3 was formed through Ag-O bonds. The molecular ions of 1 and 3 were detected by the positive-ion electrospray ionization (ESI) mass spectrometry. For 1-3, characterization by elemental analysis, TG/DTA, FT-IR, and variable-temperature solid-state 13C NMR and room-temperature 15N NMR measurements was performed, and for 1 and 3, that by solution molecular weight measurements and solution (109Ag, 1H, and 13C) NMR spectroscopies was also carried out. The antibacterial and antifungal activities of 1 and 3 were remarkable and comparable to those of the previous silver(I)-N-heterocycle complexes.  相似文献   

14.
Cadmium(II) complexes of Imidazolidine-2-selenone (ImSe) and its derivatives have been prepared with the general formula Cd(RImSe)2Cl2 (where R=Me, Et, Pr, etc.). These complexes are characterized by elemental analysis, IR and NMR (1H, 13C, 77Se and 113Cd) spectroscopy. An upfield shift in C=Se resonance of selenones in 13C NMR and in 77Se and high-frequency shifts in N-H resonances in 1H are consistent with the selenium coordination to Cd(II). The 77Se nucleus in Cd(ImSe)2Cl2 is shielded by 38 ppm on coordination, relative to the free ligand. The principal components of the 77Se, 113Cd and 13C shielding tensors for the complexes were determined from solid-state NMR data. Large selenium chemical shift anisotropies were observed for these complexes.  相似文献   

15.
The aryl-functionalized pyridylamine 2-(i)PrC(6)H(4)N(H)py (1) and bis(2-pyridyl)amines of the type ArN(py)(2) for Ar = Mes (2), 2,6-Et(2)C(6)H(3) (3), 2-(i)PrC(6)H(4) (4), 2,6-(i)Pr(2)C(6)H(3) (5), and 1-naph (6), have been prepared by the palladium-catalyzed cross-coupling of substituted anilines with 2-bromopyridine, and have been characterized by (1)H and (13)C NMR NMR, FTIR, MS, and TGA. Complexes of these new N-aryl bis(2-pyridyl)amines have been prepared for the acid salts [H{ArN(py)(2)}]BF(4) where Ar = Mes (7) and 2-(i)PrC(6)H(4) (8), and the dimeric bridged complexes [Cu{ArN(py)(2)}(μ-X)(Y)](2) where X/Y = Cl(-) and Ar = Ph (9), 2-(i)PrC(6)H(4) (10), and 1-naph (11), in addition to X = OH(-), Y = H(2)O and Ar = Mes (12). The olefin complexes [Cu(Ar-dpa)(styrene)]BF(4) for Ar = Ph (13), Mes (14), 2-(i)PrC(6)H(4) (15), and 1-naph (16), in addition to the norborylene complexes of Ar = Mes (17) and 2-(i)PrC(6)H(4) (18) have been prepared and characterized by (1)H and (13)C NMR, FTIR, and TGA. The crystal structures have been determined for compounds 1-17. Secondary amine 1 crystallizes in hydrogen-bonded head-to-tail dimers, while the N-aryl bis(2-pyridyl)amines 2-6 crystallize in a three-bladed propellar conformation, having nearly planar geometries about the amine nitrogen. The geometry about copper centers in the dimeric complexes 9-12 is distorted trigonal bypyramidal, with the axial positions occupied by one of the two pyridyl nitrogens and one of the bridging ligands (i.e., Cl or OH). The copper atoms in each of the olefin complexes 13-17 are coordinated to the two pyridine nitrogen atoms and the appropriate olefin; consistent with a pseudo three-coordinate Cu(I) cation. Distortion of pyridyl ring geometries about the copper centers, and concomitant bending of the aryl groups away from the CuN(amine) vectors were found to correlate with the steric bulk of the aryl group present in both dimeric and olefin complexes. Such distortion is also observed to a lesser extent in the acid salts as well. The (1)H and (13)C NMR spectra of [Cu(Ar-dpa)(olefin)]BF(4) exhibit an upfield shift in the olefin signal as compared to free olefin. A good correlation exists between the (1)H and (13)C NMR Δδ values and olefin dissociation temperatures, confirming that the shift of the olefin NMR resonances upon coordination is associated with the binding strength of the complex.  相似文献   

16.
N-Heterocyclic carbene (NHC) ligand precursors, namely, HIm(A)Cl [1,3-bis(2-ethoxy-2-oxoethyl)-1H-imidazol-3-ium chloride] and HIm(B)Cl {1,3-bis[2-(diethylamino)-2-oxoethyl]-1H-imidazol-3-ium chloride}, functionalized with hydrophilic groups on the imidazole rings have been synthesized and were used in the synthesis of corresponding carbene complexes of silver(I) and copper(I), {[Im(A)]AgCl}, {[Im(A)]CuCl}, and {[Im(B)](2)Ag}Cl. Related Au(I)NHC complexes {[Im(A)]AuCl} and {[Im(B)]AuCl} have been obtained by transmetalation using the silver carbene precursor. These compounds were characterized by several spectroscopic techniques including NMR and mass spectroscopy. HIm(B)Cl and the gold(I) complexes {[Im(A)]AuCl} and {[Im(B)]AuCl} were also characterized by X-ray crystallography. The cytotoxic properties of the NHC complexes have been assessed in various human cancer cell lines, including cisplatin-sensitive and -resistant cells. The silver(I) complex {[Im(B)](2)Ag}Cl was found to be the most active, with IC(50) values about 2-fold lower than those achieved with cisplatin in C13*-resistant cells. Growth-inhibitory effects evaluated in human nontransformed cells revealed a preferential cytotoxicity of {[Im(B)](2)Ag}Cl versus neoplastic cells. Gold(I) and silver(I) carbene complexes were also evaluated for their ability to in vitro inhibit the enzyme thioredoxin reductase (TrxR). The results of this investigation showing that TrxR appeared markedly inhibited by both gold(I) and silver(I) derivatives at nanomolar concentrations clearly point out this selenoenzyme as a protein target for silver(I) in addition to gold(I) complexes.  相似文献   

17.
The NMR spectra of a series of beta-substituted iron(III) tetraphenylporphyrin (2-X-TPP) complexes have been studied to elucidate the relationship between the electron donating/withdrawing properties of the 2-substituent and the (1)H NMR spectral pattern. The electronic nature of the substituent has been significantly varied and covered the -0.6 to 0.8 Hammett constant range. Both high-spin and low-spin complexes of the general formula (2-X-TPP)Fe(III)Cl and [(2-X-TPP)Fe(III)(CN)(2)](-) have been investigated. The (1)H NMR data for the following substituents (X) have been reported: py(+), NO(2), CN, CH(3), BzO (C(6)H(5)COO), H, D, Br, Cl, CH(3), NH(2), NH(3)(+), NHCH(3), OH, and O(-). The (1)H NMR resonances for low-spin dicyano complexes have been completely assigned by a combination of two-dimensional COSY and NOESY experiments. In the case of selected high-spin complexes, the 3-H resonance has been identified by the selective deuteration of all but the 3-H position. The pattern of unambiguously assigned seven pyrrole resonances reflects the asymmetry imposed by 2-substitution and has been used as an unique (1)H NMR spectroscopic probe to map the spin density distribution. The pyrrole isotropic shifts of [(2-X-TPP)Fe(III)(CN)(2)](-) are dominated by the contact term. In order to quantify the substituent effect, the dependence of isotropic shift of all low-spin pyrrole resonances and 3-H high-spin pyrrole resonance versus Hammett constants has been studied. The electronic effect is strongly localized at the beta-substituted pyrrole. The major change of the isotropic shift has also been noted for only one of two adjacent pyrrole rings, i.e., at 7-H and 8-H positions. These neighboring protons, located on a single pyrrole ring, experienced opposite shift changes when electron withdrawing/donating properties were modified. Two other pyrrole rings for all investigated derivatives revealed considerably smaller, substituent related, isotropic shift changes. A long-range secondary isotopic shift has been observed for [(2-D-TPP)Fe(III)(CN)(2)](-). The effect is consistent with a general spin density distribution mechanism due to beta-substitution. A fairly good correlation between the 3-H isotropic shift of (2-X-TPP)Fe(III)Cl and the Hammett constant has been found as well. The observed contact shift pattern of [(2-X-TPP)Fe(III)(CN)(2)](-) reflects spin pi delocalization into the highest filled MO equivalent to the unsubstituted porphyrin 3e(pi) orbital. To account for the substituent contribution, the semiquantitative Fenske-Hall LCAO method has been used to determine the molecular orbitals involved in the spin density delocalization. For low-spin complexes, (13)C pyrrole resonances of carbons bearing a proton have been identified by means of a (1)H-(13)C HMQC experiment. The reversed order of (13)C resonance patterns as compared to their (1)H NMR counterparts has been determined, e.g., the largest isotropic shift of 3-H has been accompanied by the smallest measured (13)C isotropic shift. Analysis of the isotropic shifts in (2-X-TPP)Fe(III)Cl and [(2-X-TPP)Fe(III)(CN)(2)](-) suggests that the observed regularities of the electronic structure modification due to the beta-substitution should apply to iron(III) natural porphyrin or geoporphyrin complexes.  相似文献   

18.
Bond nature of carboxylic groups can play an important role in Ag(I)-carboxylate compounds because light and thermal stability are important requirements for future applications such as antibacterial additives. A linear correlation between bond character and light stability of silver carboxylate complexes has been predicted by a direct relationship of infrared and 13C NMR spectroscopic data. This correlation is in agreement with the thermogravimetric analysis and provides a new approach to explore the interaction and the physical properties of metal-carboxylate bonds.  相似文献   

19.
The investigation of the new structures of Ag(I), Cu(II) and Au(III) complexes, [Ag(2)(Nor)(2)](NO(3))(2), [Cu(Nor)(2)(H(2)O)(2)]SO(4).5H(2)O and [Au(Nor)(2) (H(2)O)(2)]Cl(3) (where, Nor=norfloxacin) was done during the reaction of silver(I), copper(II) and gold(III) ions with norfloxacin drug ligand. Elemental analysis of CHN, infrared, electronic, (1)H NMR and mass spectra, as well as thermo gravimetric analysis (TG and DTG) and conductivity measurements have been used to characterize the isolated complexes. The powder XRD studies confirm the amorphous nature of the complexes. The norfloxacin ligand is coordinated to Ag(I) and Au(III) ions as a neutral monodentate chelating through the N atom of piperidyl ring, but the copper(II) complex is coordinated through the carbonyl oxygen atom (quinolone group) and the oxygen atom of the carboxylic group. The norfloxacin and their metal complexes have been biologically tested, which resulted in norfloxacin complexes showing moderate activity against the gram positive and gram negative bacteria as well as against fungi.  相似文献   

20.
Brown KL  Li J  Zou X 《Inorganic chemistry》2006,45(23):9172-9174
The 13C NMR resonance and one-bond 1H-13C coupling constants of coenzyme B12 enriched in 13C in the cobalt-bound carbon have been observed in the complex of the coenzyme with the B12-dependent ribonucleotide reductase from Lactobacillus leichmannii. Neither the 13C NMR chemical shift nor the 1H-13C coupling constants are significantly altered by binding of the coenzyme to the enzyme. The results suggest that ground-state Co-C bond distortion is not utilized by this enzyme to activate coenzyme B12 for C-Co bond homolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号