首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics and Catalysis - The kinetics of epoxidation of allyl alcohol with hydrogen peroxide in the presence of a titanium-containing zeolite catalyst TS-1 has been studied. The hypothetical...  相似文献   

2.
Quantitative information was obtained on how technological parameters affect the fundamental aspects of the liquid-phase epoxidation of allyl chloride to epichlorohydrin with an aqueous-methanolic solution of hydrogen peroxide in the presence of a titanium-containing zeolite in a batch reactor. The effect of the amount of a solvent, reagents ratio, and temperature was studied. The optimal conditions of epichlorohydrin synthesis were found.  相似文献   

3.
The solvent effect on liquid-phase epoxidation of allyl chloride with an aqueous solution of hydrogen peroxide on TS-1 titanium-containing silicalite was examined. 1-Butanol, 2-butanol, 1-propanol, isopropanol, methanol, ethanol, water, acetone, methyl ethyl ketone, and 1-pentanol were tested as solvents.  相似文献   

4.
研究了Ti-MWW/H2O2催化体系对多种官能化烯烃液相环氧化的催化性能.结果表明,与钛硅分子筛TS-1相比,Ti-MWW具有更高的催化活性和环氧化产物选择性.溶剂对Ti-MWW催化环氧化反应的活性影响较大,其中水是催化丙烯酸乙酯和乙酸烯丙酯的最佳溶剂,随着C=C双键相邻官能团吸电子能力的增强,环氧化反应的催化活性下降.  相似文献   

5.
过氧化氢为氧源催化烯烃环氧化研究   总被引:2,自引:0,他引:2  
陈杨英  韩秀文 《化学进展》2006,18(4):399-409
环境友好催化烯烃环氧化是催化氧化领域中的一大热点,过氧化氢作为一种理想的清洁氧源日益受到人们的重视。本文从匀相和多相催化两方面综述了近年来以过氧化氢为氧源催化烯烃环氧化研究的主要进展,对一些有很好工业化应用前景的反应体系作了详细介绍。  相似文献   

6.
综述了以过氧化氢为氧源,多金属氧酸盐催化烯烃环氧化的研究进展,尤其是针对基于多金属氧酸盐的反应控制相转移催化体系近年来的研究进展进行了详细阐述.  相似文献   

7.
阳卫军 《分子催化》2012,(4):314-321
以苯乙烯、环己烯和反式二苯乙烯为烯烃底物,以双氧水、叔丁基过氧化氢和异丙苯过氧化氢为氧化剂,以苯环上对位和邻位氯取代的四苯基金属卟啉为仿生催化剂,对烯烃的催化环氧化反应进行了对比研究.讨论了不同氯取代位的四苯基金属卟啉对烯烃环氧化性能的影响.实验结果表明,在没有助催化剂存在下,邻位氯代的四(2,6-二氯苯基)铁(锰)卟啉对烯烃的环氧化具有优异的催化性能,烯烃底物的转化率和环氧选择性都比对位氯代的四苯基铁(锰)卟啉高,且反应条件温和.其中FeⅢ(TDCPP)Cl的催化性能最好,环氧化选择性最高,催化氧化苯乙烯时,环氧苯乙烷的选择性达到了90.4%.相同金属离子不同配体的金属卟啉传递氧原子的能力为TDCPP>T(p-Cl)PP>TPP.氧化剂的结构对环氧化物的选择性有较大影响.过氧键连有吸电子基团的异丙苯过氧化氢对环氧化物的选择性最高.根据实验结果,对金属卟啉催化环氧化机理进行了分析.  相似文献   

8.
A highly active iron (II) complex that catalyzed epoxidation of terminal olefins with hydrogen peroxide was described. The catalytic system displayed excellent catalytic ability for the selective oxidation of terminal olefins to epoxides with high selectivity (up to 97.8%) in CH3CN at 25?°C. The catalytic activity of three similarly structural iron (II) complexes was comparatively studied. The effect of various auxiliary ligands on epoxidation was investigated in detail.  相似文献   

9.
Optimization results of composition and synthesis conditions of titanium-containing zeolite, catalyst for liquid-phase epoxydation of allyl chloride with hydrogen peroxide aqueous solution in the methanol medium, are presented. Composition and preparation conditions of a catalyst to obtain epichlorohydrine in a maximum yield are established.  相似文献   

10.
《合成通讯》2013,43(12):2017-2027
Abstract

An efficient ultrasound-assisted epoxidation of olefins and α,β-unsaturated ketones over hydrotalcite catalysts in the presence of hydrogen peroxide and acetonitrile is described. This general and selective protocol is relatively fast and is applicable to a wide variety of substrates.  相似文献   

11.
The development of inexpensive and practical iron catalysts for the environmentally benign epoxidation of olefins with hydrogen peroxide as terminal oxidant is described. By systematic variation of ligands, metal sources, and reaction conditions, it was discovered that FeCl3?6H2O in combination with pyridine‐2,6‐dicarboxylic acid and different amines shows high reactivity and excellent selectivity towards the epoxidation of aromatic olefins and moderate reactivity towards that of aliphatic olefins.  相似文献   

12.
《Tetrahedron: Asymmetry》2005,16(21):3536-3561
A new class of easily tunable N,N,N-pyridinebisimidazoline (pybim) ligands have been synthesized. The synthesis and tunability of these chiral tridentate ligands are much easier and flexible compared to the popular pyboxes, making the former a suitable ligand tool box for various asymmetric transformations. Ruthenium complexes of the new ligands were synthesized and applied in the asymmetric epoxidation of olefins using hydrogen peroxide as the oxidant. Excellent yields and moderate to good enantioselectivities were achieved in the epoxidation of aromatic olefins.  相似文献   

13.
The epoxide is a kind of versatile intermediate for manufacture of a wide variety of fine chemicals. The goal of modem efficient catalytic methods is to produce desired compounds with high yield, selectivity, low cost, safety, operational simplicity and more importantly environmentally benign manner. However, there are various oxidants, which are often hazardous or expensive, being used for both laboratory and industrial epoxidation. Hydrogen peroxide (30 wt%) solution is thought as one of the ideal oxidants because water is a sole theoretical side product. Meanwhile the epoxidation of styrene is a typical one among olefins. Here, the performance of styrene epoxidation was studied with hydrogen peroxide solution catalyzed by Co(Ⅱ) phenanthroline complex encapsulated in supercages of MCM-41.  相似文献   

14.
The tetra-n-butylammonium (TBA) salt of the divacant Keggin-type polyoxometalate [TBA](4)[gamma-SiW(10)O(34)(H(2)O)(2)] (I) catalyzes the oxygen-transfer reactions of olefins, allylic alcohols, and sulfides with 30 % aqueous hydrogen peroxide. The negative Hammett rho(+) (-0.99) for the competitive oxidation of p-substituted styrenes and the low value of (nucleophilic oxidation)/(total oxidation), X(SO)=0.04, for I-catalyzed oxidation of thianthrene 5-oxide (SSO) reveals that a strongly electrophilic oxidant species is formed on I. The preferential formation of trans-epoxide during epoxidation of 3-methyl-1-cyclohexene demonstrates the steric constraints of the active site of I. The I-catalyzed epoxidation proceeds with an induction period that disappears upon treatment of I with hydrogen peroxide. (29)Si and (183)W NMR spectroscopy and CSI mass spectrometry show that reaction of I with excess hydrogen peroxide leads to fast formation of a diperoxo species, [TBA](4)[gamma-SiW(10)O(32)(O(2))(2)] (II), with retention of a gamma-Keggin type structure. Whereas the isolated compound II is inactive for stoichiometric epoxidation of cyclooctene, epoxidation with II does proceed in the presence of hydrogen peroxide. The reaction of II with hydrogen peroxide would form a reactive species (III), and this step corresponds to the induction period observed in the catalytic epoxidation. The steric and electronic characters of III are the same as those for the catalytic epoxidation by I. Kinetic, spectroscopic, and mechanistic investigations show that the present epoxidation proceeds via III.  相似文献   

15.
研究了对甲苯磺酰氟和双氧水在碱性条件下原位生成对甲苯过氧磺酸和烯烃尤其是富电子烯烃的环氧化反应的情况. 该氧化体系能将位阻较小的富电子烯烃环氧化, 并以良好的得率给出环氧化产物; 对位阻较大的富电子烯烃, 只以中等得率生成了环氧化产物. 它也能将α,β-不饱和酮环氧化. 实验结果进一步拓展了磺酰氟试剂在有机合成化学中的应用.  相似文献   

16.
Titanium complexes bearing an unprecedented tridentate cyclopentadienyl-silsesquioxanate ligand provide a new class of efficient and selective catalysts for epoxidation of olefins with aqueous hydrogen peroxide under homogeneous conditions.  相似文献   

17.
钛硅分子筛TS-1催化氯丙烯环氧化反应动力学研究   总被引:9,自引:0,他引:9  
 摘要:研究了钛硅分子筛催化氯丙烯环氧化反应的条件及动力学行为.\r\n结果表明,以钛硅分子筛为催化剂,氯丙烯可被高选择性地氧化为环氧\r\n氯丙烷.环氧化反应速度与分子筛中骨架钛的含量及分子筛的用量呈正\r\n比关系,是一级反应.对于氧化剂H2O2,只有当c(H2O2)<0.4mol/\r\nL时,环氧化反应为一级反应;而c(H2O2)>1.0mol/L时,为零级反\r\n应.对于氯丙烯,随着其浓度的变化,环氧化反应的级数在1和0之间.\r\n然而,只有当氯丙烯浓度很高时,环氧化反应的级数才有明显的降低.\r\n根据实验结果和Eley-Rideal单分子吸附方程,提出了氯丙烯环氧化反\r\n应的动力学模型.\r\n关键词:钛硅分子筛,氯丙烯,过氧化氢,环氧化,环氧氯丙烷,反应\r\n动力学  相似文献   

18.
Liquid-phase epoxidation of cinnamyl alcohol was carried out with hydrogen peroxide as oxidizing agent using indium-containing boron- and aluminium-beta zeolites. It was proved that InO+ ions, created by oxidation of univalent indium cations incorporated into beta zeolite by reductive solid-state ion exchange, play an important role in the activation of hydrogen peroxide. The indium-hydroperoxo complex formed in beta zeolite pores was found to be accessible by the bulky cinnamyl alcohol molecules. Among the applied catalysts In/H[B]-beta (containing 7.6% In2O3/g) showed the highest selectivity in cinnamyl alcohol epoxidation.  相似文献   

19.
Binuclear manganese(II) complexes with macrocyclic ligands have been synthesized by template Schiff base condensation of diethylenetriamine and pentane-2,4-dione or 1,3-diphenyl-propane-1,3-dione. Catalytic epoxidation of simple olefins with hydrogen peroxide and t-BHP were studied using the above manganese complexes in the presence of a base. The influence of reaction temperature, the additive methanol and the cocatalyst had been investigated. The major products of the oxidations were the epoxides. The new manganese complexes showed significant catalytic activities for the epoxidation of alkenes using hydrogen peroxide as oxidant and ammonium acetate as cocatalyst.  相似文献   

20.
The titanium complex of the cis-1,2-diaminocyclohexane (cis-DACH) derived Berkessel-salalen ligand is a highly efficient and enantioselective catalyst for the asymmetric epoxidation of terminal olefins with hydrogen peroxide (“Berkessel-Katsuki catalyst”). We herein report that this epoxidation catalyst also effects the highly enantioselective hydroxylation of benzylic C−H bonds with hydrogen peroxide. Mechanism-based ligand optimization identified a novel nitro-salalen Ti-catalyst of the highest efficiency ever reported for asymmetric catalytic benzylic hydroxylation, with enantioselectivities of up to 98 % ee, while overoxidation to ketone is marginal. The novel nitro-salalen Ti-catalyst also shows enhanced epoxidation efficiency, as evidenced by e.g. the conversion of 1-decene to its epoxide in 90 % yield with 94 % ee, at a catalyst loading of 0.1 mol-% only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号