首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The target artificial light‐harvesting antenna, comprising 21 discrete chromophores arranged in a logical order, undergoes photochemical bleaching when dispersed in a thin plastic film. The lowest‐energy component, which has an absorption maximum at 660 nm, bleaches through first‐order kinetics at a relatively fast rate. The other components bleach more slowly, in part, because their excited‐state lifetimes are rendered relatively short by virtue of fast intramolecular electronic energy transfer to the terminal acceptor. Two of the dyes, these being close to the terminal acceptor but interconnected through a reversible energy‐transfer step, bleach by way of an autocatalytic step. Loss of the terminal acceptor, thereby switching off the energy‐transfer route, escalates the rate of bleaching of these ancillary dyes. The opposite terminal, formed by a series of eight pyrene‐based chromophores, does not bleach to any significant degree. Confirmation of the various bleaching steps is obtained by examination of an antenna lacking the terminal acceptor, where the autocatalytic route does not exist and bleaching is very slow.  相似文献   

2.
《Electrophoresis》2018,39(19):2417-2424
A theoretical framework is provided for determining the self‐thermophoretic velocity of a light irradiated spheroidal Janus nanoparticle consisting of symmetric dielectric and perfectly conducting semi‐spheroids. The analysis is based on solving the linearized Joule heating problem due to uniform laser irradiance and on explicitly determining the temperature fields inside and outside the particle. We employ the thermoelectric (Peltier‐ Seebeck) methodology to find the surface self ‐ induced temperature gradient and the related slip velocity which determines the autonomous phoretic (self ‐ propulsion) mobility of the Janus particle. Simplified explicit expressions for the self ‐ thermophoretic velocities of spheroidal (prolate and oblate) Janus particles in terms of their aspect ratios are found and few practical limiting cases (i.e., sphere, disk and needle) are also discussed.  相似文献   

3.
In this study, we coupled a well‐established whole‐cell system based on E. coli via light‐harvesting complexes to Rieske oxygenase (RO)‐catalyzed hydroxylations in vivo. Although these enzymes represent very promising biocatalysts, their practical applicability is hampered by their dependency on NAD(P)H as well as their multicomponent nature and intrinsic instability in cell‐free systems. In order to explore the boundaries of E. coli as chassis for artificial photosynthesis, and due to the reported instability of ROs, we used these challenging enzymes as a model system. The light‐driven approach relies on light‐harvesting complexes such as eosin Y, 5(6)‐carboxyeosin, and rose bengal and sacrificial electron donors (EDTA, MOPS, and MES) that were easily taken up by the cells. The obtained product formations of up to 1.3 g L?1 and rates of up to 1.6 mm h?1 demonstrate that this is a comparable approach to typical whole‐cell transformations in E. coli. The applicability of this photocatalytic synthesis has been demonstrated and represents the first example of a photoinduced RO system.  相似文献   

4.
Knowledge about the dynamical properties of a protein is of essential importance for understanding the structure–dynamics–function relationship at the atomic level. So far, however, the correlation between internal protein dynamics and functionality has only been studied indirectly in steady‐state experiments by variation of external parameters like temperature and hydration. In the present study we describe a novel type of (laser‐neutron) pump‐probe experiment, which combines in situ optical activation of the biological function of a membrane protein with a time‐dependent monitoring of the protein dynamics using quasielastic neutron scattering. As a first successful application we present data obtained selectively in the ground state and in the M‐intermediate of bacteriorhodopsin (BR). Temporary alterations in both localized reorientational protein motions and harmonic vibrational dynamics have been observed during the photocycle of BR. This observation is a direct proof for the functional significance of protein structural flexibility, which is correlated with the large‐scale structural changes in the protein structure occurring during the M‐intermediate. We anticipate that functionally important modulations of protein dynamics as observed here are of relevance for most other proteins exhibiting conformational transitions in the time course of functional operation.  相似文献   

5.
Göbel et al. present in this issue an exemplary study of identification of chromophores from Arabidopsis thaliana cryptochrome‐3. Usually taken for granted, proteins and cofactors, respective chromophores, from heterologous expression are considered identical to material isolated from their genuine host. Cryptochromes carry two chromophores, an antenna cofactor and a functional flavin chromophore, both noncovalently embedded into the protein. In particular the antenna chromophore is loosely bound and often lost during protein purification. The authors identify from plant‐extracted Cry3 unambiguously N5,N10‐methenyltetrahydrofolate as antenna chromophore and flavin adenine dinucleotide as the functional chromophore.  相似文献   

6.
A novel visible light mediated catalytic system based on low cost iron complex, that is, Fe(bpy)3(PF)6 photocatalyst that initiates and control the free radical polymerization of methacrylates using ethyl α‐bromoisobutyrate (EBriB) as an initiator and 20 watt LED as light source is developed. The polymerization is initiated with turning the light on and immediately terminated by turning the light off. In addition, the molecular weight of polymer can be varied by changing the ratio of monomer and initiator. The merits of the present methodology lie in the use of low cost less precious, highly abundant iron‐based photocatalyst, avoidance of sacrificial donor and need of lower catalyst amount under visible light. The optimum amount of catalyst and initiator were established and successful polymerization of various methacrylates was achieved under the optimized polymerization conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2739–2746  相似文献   

7.
High levels of ultraviolet‐B (UVB) radiation can negatively affect aquatic animals. Macrobrachium olfersi is a prawn that lives in clear freshwaters and during the breeding season, females carry eggs in an external brood pouch. Therefore, we hypothesize that eggs are also exposed to environmental UVB radiation. The aim of this study was to investigate whether UVB radiation induces DNA damage and compromises cell cycle in embryos of M. olfersi. In laboratory, UVB irradiance (310 mW. cm?2) that embryos receive in the natural environment was simulated. After irradiation, embryos were kept under different light conditions in order to recognize the presence of cell repair. UVB radiation induces DNA damage, specifically thymine dimers. After 48 h of UVB exposure, a significant decrease in the level of these dimers was observed in embryos kept under visible light while it remained constant in the dark. Moreover, under visible light and darkness, a decrease in proliferation was observed after 48 h of irradiation. An increase in PCNA expression and decrease in p53 expression were observed after, respectively, 1 and 48 h of exposure. Our results showed that UVB radiation disturbs the cell cycle and induces DNA damage in M. olfersi embryos. However, under visible light these embryos showed successful DNA repair.  相似文献   

8.
9.
10.
11.
Chlorophyll breakdown in higher plants occurs by the so called “PaO/phyllobilin” path. It generates two major types of phyllobilins, the characteristic 1‐formyl‐19‐oxobilins and the more recently discovered 1,19‐dioxobilins. The hypothetical branching point at which the original 1‐formyl‐19‐oxobilins are transformed into 1,19‐dioxobilins is still elusive. Here, we clarify this hypothetical crucial transition on the basis of the identification of the first natural 1,19‐dioxobilin‐type fluorescent chlorophyll catabolite (DFCC). This transient chlorophyll breakdown intermediate was isolated from leaf extracts of Arabidopsis thaliana at an early stage of senescence. The fleetingly existent DFCC was then shown to represent the direct precursor of the major nonfluorescent 1,19‐dioxobilin that accumulated in fully senescent leaves.  相似文献   

12.
13.
14.
A deaminative strategy for the visible‐light‐mediated generation of alkyl radicals from redox‐activated primary amine precursors is described. Abundant and inexpensive primary amine feedstocks, including amino acids, were converted in a single step into redox‐active pyridinium salts and subsequently into alkyl radicals by reaction with an excited‐state photocatalyst. The broad synthetic potential of this protocol was demonstrated by the alkylation of a number of heteroarenes under mild conditions.  相似文献   

15.
The incorporation of difluoromethylated (CF2) moiety into potentially useful parent molecules lead to significant changes in metabolic stability, lipophilicity, and solubility of the molecules. Over the past several years, with the advent of new difluoromethylating reagents, great progress has been made in the development of a protocol for the direct incorporation of the CF2H group into organic molecules. Among them, difluroalkylation induced by visible light has emerged as an efficient strategy over the past few years. In particular, this protocol provides a more sustainable alternative to other traditional radical‐triggered reactions in terms of environment, energy, step‐economy, health, and safety. The present review mainly focuses on the development of the photocatalytic difluoroalkylation to olefinic moiety using transition‐metal complexes, organic dyes as the photocatalyst; and some organic compounds as a medium of photocatalysis.  相似文献   

16.
Monochromatic lights influenced the proliferation and differentiation of skeletal satellite cells in broilers by the enhancement of insulin‐like growth factor 1 (IGF‐1) secretion. However, whether melatonin (MEL)‐mediated monochromatic lights influenced the IGF‐1 secretion remains unclear. Newly hatched broilers, including intact, sham operation and pinealectomy groups, were exposed to blue (BL), green (GL), red (RL) and white light (WL) from a light‐emitting diode system for 14 days. The results showed that GL effectively promoted the secretion of MEL and IGF‐1, the expression of proliferating cell nuclear antigen and MEL receptor subtypes Mel1a, Mel1b and Mel1c in the liver compared to BL and RL in vivo. Moreover, those was a positive correlation between MEL and IGF‐1 (r = 0.834). After pinealectomy, however, these parameters declined, and there were no differences between GL and other monochromatic light treatments. In vitro, exogenous MEL increased hepatocyte proliferation and IGF‐1 secretion. Meanwhile, the MEL enhancements were suppressed by prazosin (selective Mel1c antagonist), followed by luzindole (nonselective Mel1a/Mel1b antagonist), but not suppressed by 4‐phenyl‐2‐propionamideotetralin (selective Mel1b antagonist). These findings demonstrated that MEL mediated the monochromatic light‐induced secretion of IGF‐1 in chicks’ livers by Mel1c and that Mel1a may be involved in this process.  相似文献   

17.
A mild visible‐light‐mediated strategy for cysteine arylation is presented. The method relies on the use of eosin Y as a metal‐free photocatalyst and aryldiazonium salts as arylating agents. The reaction can be significantly accelerated in a microflow reactor, whilst allowing the in situ formation of the required diazonium salts. The batch and flow protocol described herein can be applied to obtain a broad series of arylated cysteine derivatives and arylated cysteine‐containing dipeptides. Moreover, the method was applied to the chemoselective arylation of a model peptide in biocompatible reaction conditions (room temperature, phosphate‐buffered saline (PBS) buffer) within a short reaction time.  相似文献   

18.
Four different seaweed extracts were employed as the dyes of dye sensitized solar cells (DSSCs) to investigate the light‐electron efficiency. The sensitizers, extracted from Nannochloropsis spp., Tetraselmis spp., Gracilaria spp., and Ulvales spp., showed their light‐electronic transfer ability in different light intensities. Among them, Ulvales output a higher light‐voltage, about 0.4 V. The output voltage increased when light intensity increased. Gracilaria extract produced a higher output voltage at 35 Lux, but its output voltage decreased over 500 Lux. The sensitizers extracted from these seaweeds had monochromatic incident photon‐to‐electron conversion efficiencies (IPCE) between 23‐61% in 220‐260 nm wavelengths. Among them, Ulvales output higher IPCE than Tetraselmis and Nannochloropsis. SEM analysis of DSSC surfaces revealed that the efficiency of seaweed DSSCs was governed by chlorophyll size. The chlorophyll particle size of Ulvales spp. was the largest. The chlorophyll particle size of Gracilaria spp. was the smallest and yielded the lowest IPCE.  相似文献   

19.
The development of perchlorate‐free M662 40 mm illuminating pyrotechnic compositions is described. On the bases of cost, performance, and sensitivity, potassium periodate was determined to be most effective potassium perchlorate replacement in the compositions tested. The optimal periodate‐based composition exceeded the performance of the perchlorate‐containing control, exhibited low sensitivity values to impact, friction, and electrostatic discharge, and had high thermal onset temperatures.  相似文献   

20.
There are a limited number of ring‐contraction methodologies which convert readily available five‐membered rings into strained four‐membered rings. Here we report a photo‐induced radical‐mediated ring contraction of five‐membered‐ring alkenyl boronate complexes into cyclobutanes. The process involves the addition of an electrophilic radical to the electron‐rich alkenyl boronate complex, leading to an α‐boryl radical. Upon one‐electron oxidation, ring‐contractive 1,2‐metalate rearrangement occurs to give a cyclobutyl boronic ester. A range of radical precursors and vinyl boronates can be employed, and chiral cyclobutanes can be accessed with high levels of stereocontrol. The process was extended to the preparation of benzofused cyclobutenes and the versatility of the boronic ester was demonstrated by conversion to other functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号