首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the solid phase/liquid deposition CdSe quantum dots (QD) were synthesized using selenium and cadmium‐salt as precursor at room temperature. The average diameter of CdSe QD estimated from the high resolution transmission electron microscopy (HRTEM) graph and absorption spectra was ca. 3–3.5 nm. The mercaptoacetic‐acid stabilized CdSe QD exhibited ultraviolet absorption at 350 and 380 nm and strong fluorescence emission at 481.6 nm, respectively. When conjugated with pepsin, the fluorescence peak intensity of CdSe QD decreased considerably and the fluorescence peak shifted to 467.2 nm. Under optimal conditions, a concentration in 5–50 mg· L?1 of pepsin could be determined on the basis of fluorescence decrease ratio of CdSe QD, with a detection limit 3δ of 0.36 mg·L?1 (n=10). The proposed method was applied to detection of the concentration of pepsin in human gastric juice.  相似文献   

2.
Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as “hidden” markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2‐diazo‐1‐indanone group can be irreversibly photoactivated, either by irradiation with UV‐ or violet light (one‐photon process), or by exposure to intense red light (λ~750 nm; two‐photon mode). All dyes possess a very small 2‐diazoketone caging group incorporated into the 2‐diazo‐1‐indanone residue with a quaternary carbon atom (C‐3) and a spiro‐9H‐xanthene fragment. Initially they are non‐colored (pale yellow), non‐fluorescent, and absorb at λ=330–350 nm (molar extinction coefficient (ε)≈104 M?1 cm?1) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511–633 and 525–653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε= 3–8×104 M?1 cm?1 and fluorescence quantum yields (?)=40–85 % in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water‐soluble caged red‐emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino‐reactive N‐hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375–420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3–6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (?=20–38 %). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10–40 % of the non‐fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible transition to a “dark” non‐emitting state or photobleaching) provides multicolor images with subdiffractional optical resolution. The applicability of these novel caged fluorophores in super‐resolution optical microscopy is exemplified.  相似文献   

3.
A novel and simple fluorescence probe was synthesized from benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and trimethylsilylethyne via Sonogashira reaction, and showed highly selective and sensitive fluorescence decreasing response towards F?. The probe molecule turned to a weakly fluorescent terminal alkyne moiety because its trimethylsilyl (TMS) group was cleaved by fluoride, which was proved by 1H NMR titration. Whereas no distinct fluorescent changes were observed with the addition of other anions, such as Cl?, Br?, I?, AcO? and H2PO4?. Upon the addition of F?, the maximum fluorescence emission wavelength shifted from 460 nm to 450 nm with a decrease of fluorescence intensity by 40% within 20 s. Moreover, the detection limit towards F? was calculated to be as low as 73.5 nmol/L.  相似文献   

4.
以三(4-溴苯)胺、4-氨基苯硼酸频哪醇酯、4-二乙氨基水杨醛和三氟化硼乙醚溶液为原料,经过Suzuki偶联反应、缩合反应和配位反应,设计、合成了一种新型三枝结构的三苯胺有机硼配合物(TPAB),使用 1H和 13C NMR对 TPAB的结构进行了表征,通过紫外可见吸收光谱和荧光发射光谱详细研究了TPAB溶液和固体态的光物理性能以及不同的外部条件对其发光性能的影响。发现 TPAB溶液和固体态都具有较强的荧光发射,在四氢呋喃溶液中的吸收峰位于 417 nm,发射峰位于 548 nm,荧光量子产率为 40.49%,荧光寿命为 1.72 ns;TPAB 固体的荧光发射峰位于 582 nm,荧光量子产率为 11.43%,荧光寿命为 0.72ns,表明TPAB具有优良的双光发光性能。此外,TPAB具有良好的发光稳定性,不受pH、金属离子、氨基酸和压力的影响。基于化合物优异的发光性能,将其应用于荧光细胞成像,在肝癌细胞(HepG2)中表现出良好的单光子和双光子荧光成像效果。  相似文献   

5.
以三(4-溴苯)胺、4-氨基苯硼酸频哪醇酯、4-二乙氨基水杨醛和三氟化硼乙醚溶液为原料,经过Suzuki偶联反应、缩合反应和配位反应,设计、合成了一种新型三枝结构的三苯胺有机硼配合物(TPAB),使用1H和13C NMR对TPAB的结构进行了表征,通过紫外可见吸收光谱和荧光发射光谱详细研究了TPAB溶液和固体态的光物理性能以及不同的外部条件对其发光性能的影响。发现TPAB溶液和固体态都具有较强的荧光发射,在四氢呋喃溶液中的吸收峰位于417 nm,发射峰位于548 nm,荧光量子产率为40.49%,荧光寿命为1.72 ns; TPAB固体的荧光发射峰位于582 nm,荧光量子产率为11.43%,荧光寿命为0.72ns,表明TPAB具有优良的双态发光性能。此外,TPAB具有良好的发光稳定性,不受pH、金属离子、氨基酸和压力的影响。基于化合物优异的发光性能,将其应用于荧光细胞成像,在肝癌细胞(HepG2)中表现出良好的单光子和双光子荧光成像效果。  相似文献   

6.
Discharged obelin, a complex of coelenteramide and polypeptide, is a fluorescent protein produced from the photoprotein obelin, which is responsible for bioluminescence of the marine hydroid Obelia longissima. Discharged obelin is stable and nontoxic and its spectra are variable, and this is why it can be used as a fluorescent biomarker of variable color in vivo and in vitro. Here we examined light-induced fluorescence of Ca2+-independent discharged obelin (obtained without addition of Ca2+). Its emission and excitation spectra were analyzed under variation of the excitation wavelength (260–390 nm) and the emission wavelength (400–700 nm), as well as the 40 °C exposure time. The emission spectra obtained with excitation at 260–300 nm (tryptophan absorption region) included three peaks with maxima at 355, 498, and 660 nm, corresponding to fluorescence of tryptophan, polypeptide-bound coelenteramide, and a hypothetical indole–coelenteramide exciplex, respectively. The emission spectra obtained with excitation at 310–380 nm (coelenteramide absorption region) did not include the 660-nm maximum. The peak in the red spectral region (λ max?=?660 nm) has not been previously reported. Exposure to 40 °C under excitation at 310–380 nm shifted the obelin fluorescence spectra to the blue, whereas excitation at 260–300 nm shifted them to the red. Hence, red emission and variation of the excitation wavelength form a basis for development of new medical techniques involving obelin as a colored biomarker. The addition of red color to the battery of known (violet to yellow) colors increases the potential of application of obelin.  相似文献   

7.
A new diarylethene with ethylimidazo[2,1-b]thiazole-6-hydrazide unit was synthesized, and its photochromic and fluorescent behaviors have been systematically investigated by the stimulation of lights and metal ions in methanol. This new diarylethene exhibited high selectivity and sensitivity toward Al3+ and Zn2+. The addition of Al3+ and Zn2+ displayed excellent colorimetric response behaviour with the concomitant color change from colorless to yellow, which could be easily observed by the naked eye. Upon addition of Al3+, the fluorescence intensity was enhanced by 180–fold and the emission peak of 1O–Al3+ blue-shifted by 15?nm accompanied with a color change from colorless to bright blue. In contrast, when stimulated with Zn2+, its fluorescence intensity was enhanced by 35–fold and the emission peak of 1O–Zn2+ red-shifted by 16?nm with an evident color change from black to bright green. The LOD for Al3+ and Zn2+ were determined to be 2.97?×?10?9?mol?L?1 and 5.98?×?10?9?mol?L?1, respectively. Moreover, a logic circuit was constructed with the fluorescence intensity as the output signal responding to the light and chemical species as the inputs.  相似文献   

8.
A novel cationic IrIII complex [Ir(Bpq)2(CzbpyCz)]PF6 (Bpq=2‐[4‐(dimesitylboryl)phenyl]quinoline, CzbpyCz = 5,5′‐bis(9‐hexyl‐9H‐carbazol‐3‐yl)‐2,2′‐bipyridine) containing both triarylboron and carbazole moieties was synthesized. The excited‐state properties of [Ir(Bpq)2(CzbpyCz)]PF6 were investigated through UV/Vis absorption and photoluminescence spectroscopy and molecular‐orbital calculations. This complex displayed highly efficient orange‐red phosphorescent emission with an emission peak of 583 nm and quantum efficiency of Φ=0.30 in dichloromethane at room temperature. The binding of fluoride ions to [Ir(Bpq)2(CzbpyCz)]PF6 can quench the phosphorescent emission from the IrIII complex and enhance the fluorescent emission from the N^N ligand, which corresponds to a visual change in the emission from orange‐red to blue. Thus, both colorimetric and ratiometric fluoride sensing can be realized. Interestingly, an unusual intense absorption band in the visible region was observed. And the detection of F? ions can also be carried out with visible light as the excitation wavelength. More importantly, the linear response of the probe absorbance change at λ=351 nm versus the concentration of F? ions allows efficient and accurate quantification of F? ions in the range 0–50 μM .  相似文献   

9.
Herein, we combine the ideas of concerted emission from fluorophore ensembles and its further amplification through FRET in an organic–inorganic hybrid approach. Spherical and highly fluorescent organic nanoparticles (FONPs, Φf=0.38), prepared by the self‐assembly of oligo(phenylene ethynylene) (OPE) molecules, were selected as a potential donor material. This organic core was then decorated with a shell of fluorescent CdSe/ZnS core–shell quantum dots (QDs; <d>?5.5 nm, Φf=0.27) with the aid of a bifunctional ligand, mercaptopropionic acid. Its high extinction coefficient (?≈4.1×105 m ?1 cm?1) and good spectral match with the emission of the FONPs (J(λ)≈4.08×1016 m ?1 cm?1 nm4) made them a better acceptor candidate to constitute an efficient FRET pair (ΦFRET=0.8). As a result, the QD fluorescence intensity was enhanced by more than twofold. The fundamental calculations carried out indicated an improvement in all the FRET parameters as the number of QDs around the FONPs was increased. This, together with the localization of multiple QDs in a nanometric dimension (volume≈1.8×106 nm3), gave highly bright reddish luminescent hybrid particles as visualized under a fluorescence microscope.  相似文献   

10.
A new azoimine receptor, R1, was synthesized by Schiff base condensation of 4-(4-butylphenyl) azophenol and 2,6-diaminopyridine and acts as a colorimetric and fluorometric chemosensor for F? and also toward Cu2+ ions in aqueous environment. UV–Vis absorption and fluorescent emission spectra were employed to study the sensing process. Emission study was performed to examine the dual sensing ability of the obtained probe with sequential addition of F? followed by Cu2+ and vice versa. The receptor is an efficient “ON–OFF” fluorescent probe for the fluoride ion. Also, R1 + F? operated as an “OFF–ON” fluorescent sensor for Cu2+ ions. Considering emission intensity and absorption wavelength for F? and Cu2+ ions, a molecular system was developed with the ability to mimic the functions of XNOR logic gating on the molecular level. In addition, R1 behaved as a molecular security keypad lock with F? and Cu2+ inputs. The keypad lock operation is particularly important, as the output of the system depends not only on the proper combination but also on the order of input signals, creating the correct password that can be used to “open” this molecular keypad lock through strong fluorescence emission at 460?nm.  相似文献   

11.
A novel fluorescent chemsensor TBS-protected salicylaldehyde azine (TSAA) for fluoride ion was developed based on aggregation-induced emission (AIE). The probe TSAA was prepared by the reaction of salicylaldehyde azine (SAA) with tert-butyldimethylsilyl chloride (TBS-Cl) via an unusual synthetic methodology and shows only non-emission. Upon treatment with fluoride in aqueous MeCN solution, the TBS protective group of probe TSAA was removed readily and the fluorescence of the probe was switched on, which resulted in a new fluorescence peak around 543 nm. The fluorescent intensity at 543 nm increases linearly with fluoride ion concentration in the range 1–50 μmol L?1. This proposed probe shows excellent selectivity toward fluoride ion over other common anions and cations.  相似文献   

12.
Two non-natural amino acids with fluorescent urea side-chains were prepared from Fmoc-protected aspartic and glutamic acids. In acetonitrile solution, the emission of the Asp derivative is strongly quenched by HCO3 or H2PO4 (K ≥ 104 M? 1) but not by less-basic Cl or NO3. Solutions containing excess bicarbonate ion appear peach-colored, with λabs at 394 and 495 nm ascribed to the anion complex and urea-deprotonated sensor, respectively. Corresponding fluorescence bands are observed at 475 and 579 nm. Dihydrogenphosphate is not sufficiently basic to remove H+ from the ground state of the fluorophore. However, deprotonation of the excited state occurs in the presence of>1 equiv of H2PO4em = 578 nm). According to 1H NMR in DMSO-d6, recognition of H2PO4 occurs at the urea N–H groups and the amino acid backbone N–H. DFT techniques further predict that the backbone C = O group accepts an H-bond from the anion. The Glu derivative has lower affinity for anions; the additional CH2 group in its side-chain apparently sets the backbone N–H and C = O too far from the urea to contribute significantly to binding. To demonstrate suitability for standard Fmoc-based solid-phase peptide synthesis, the Asp derivative was incorporated into a 12-residue peptide.  相似文献   

13.
《Analytical letters》2012,45(3):417-423
Abstract

A spectrofluorimetric method was developed for the determination of gatifloxacin. The emission peak for gatifloxacin was recorded at 495 nm upon excitation at 291 nm. The fluorescence process was pH dependent. The dynamic range for the method was 16–80 ng ml?1with detection limit of 3.97 ng ml?1. A linear relationship between the fluorescence intensity and the concentration of gatifloxacin solution was obtained with r 2 of 0.9968. The method has successfully applied to the determination of gatifloxacin in pure, authentic and aqueous samples.  相似文献   

14.
A novel fluorometric method was developed for the sensitive and selective detection of Pro-Gly (PG) and Pro-Gly-Pro (PGP) using 4-chlorobenzene-1,2-diol (4-CBD) as a fluorogenic reagent. The reaction was performed at 37°C for 30 min in the presence of a borate buffer (pH 7.0) and sodium periodate. The resulting fluorescence intensity was measured using a spectrofluorometer with excitation and emission wavelengths of 450 nm and 535 nm. To obtain a stable fluorescent signal and maximise its intensity, different reaction conditions such as the concentrations of the reagents, the reaction time, and the pH were optimised. Under the optimised conditions, a linear relationship was obtained between fluorescence intensity and peptide concentrations from 1.0–40.0 µmol L?1 with a limit of detection of 1.0 µmol L?1 (S/N = 3). Both PG and PGP generated a strong signal out of all the peptides tested and no other biogenic substances such as amino acids or proteins produced any fluorescence. The reaction thus developed is simple, rapid, selective, and sensitive. It can be applied to the determination of peptides as biomarkers or substrates.  相似文献   

15.
A new carbazole functionalized Schiff base CBM was synthesized and characterized. CBM can selectively recognize Cu2+ via UV–vis and fluorescence signal among common biologically relevant metal ions. When Cu2+ was added to CBM, there was a significant enhancement at the maximum absorption wavelength of 393 nm and with a distinct blue shift. The maximum emission peak was significantly attenuated by a factor of about 15 times at 535 nm and the blue shift of emission wavelength was observed. When other metal ions were added, there was no remarkable change at the maximum absorption and emission peak. Under the illumination of 365 nm ultraviolet lamp, the color of the CBM solution changed from light blue to dark blue after the addition of Cu2+. The combination mechanism of CBM with Cu2+ was nicely explored by density functional theory studies. The probe CBM has good cell permeability, fluorescence electron microscopy experiments show that CBM can be used as a fluorescent probe to detect the presence or absence of Cu2+ in Hela cells. Furthermore, the probe CBM can also be used for the detection of copper ions in actual water samples.  相似文献   

16.
Five new materials based on pyrazole derivatives have been synthesized and characterized as organic light‐emitting devices. This report presents a novel approach to combine pyrazole with aromatic hydrocarbons via methylene. The formed molecules exhibited twisted structures, which resulted in high glass transition temperatures (Tg), which ranged from 83.0 to 101.1°C. They also had high optical band gaps (Eg); most of their optical band gaps are determined by the absorption edge technique as 3.43 to 3.66 eV, evaluated photophysical properties of these synthesized novel chromophores, the optical properties such as maximum absorption and emission wavelengths (λ; nm), molar extinction coefficients (ε; cm?1·M?1), Stokes' shifts (ΔλST; nm), and quantum yields (φF). These compounds exhibited intense absorption bonds between 230 and 350 nm, and the effect of solvent polarity on emission of these pyrazole derivatives was also studied. In addition, they showed blue fluorescence in different solvents and bathochromic shift with the increase in the solvent polarity.  相似文献   

17.
In this research, we developed a novel and facile strategy to prepare aliphatic tertiary amine chromophore hyperbranched poly(amino ether ester)s with pH and thermo responsiveness via phosphazene base (t-BuP2) catalyzed oxa-Michael addition polymerization of triethanolamine with ethylene glycol diacrylate at room temperature. UV–vis and fluorescence analyses results showed that the tertiary amine at branching point for hyperbranched poly(amino ether ester)s is very important to retain strong blue fluorescence of tertiary amine chromophore. Moreover, the hyperbranched poly(amino ether ester)s exhibit an aggregation caused quenching (ACQ) fluorescence, solvent induced red-shifted emission, molecular weight, and temperature dependent emission characters. More interestingly, the hyperbranched poly(amino ether ester)s show extreme acid induced quenching fluorescence phenomenon, and also display good water solubility, specific recognition of Fe3+ ion, low cytotoxicity, and bright cell imaging, which could serve as a microenvironment-responding fluorescent probe for application in chemical sensing, cell imaging, drug delivery, or disease diagnostics. This research provides a versatile method for the preparation of stimuli-responsive aliphatic tertiary amine chromophore polymers, and supplies ideas for researchers to explore other unconventional fluorescent polymers for application.  相似文献   

18.
在弱酸性HC1-NaAc缓冲介质中,曙红Y(EY)在可见光区有强烈的光吸收,其最大吸收波长(lmax)位于517 nm处,而聚乙烯吡咯烷酮(PVP)在250-700 nm之间无光吸收,当EY与PVP反应形成结合产物时,EY发生明显的褪色作用,最大褪色波长仍位于517 nm,并在545 nm处出现一个较小的吸收峰。其褪色程度(DA)与PVP浓度在0.40~3.20 µg mL-1范围成线性关系,此褪色反应的灵敏度高,摩尔吸光系数(ε)是6.4 × 106 L mol-1 cm-1,对PVP的检出限为0.12 µg mL-1。并研究了反应的影响因素,结果表明方法具有较好的选择性,据此发展了一种曙红Y褪色分光光度法测定PVP的新方法。方法简便快速,可用于啤酒中PVP的定量测定。  相似文献   

19.
In this paper, we described the synthesis and characterization of new diphenylethylene bearing imino group. We concentrated particularly on the investigation of the possibility of the excited state intramolecular charge transfer (ESIPT) of the new dyes experimentally and theoretically. The absorption and fluorescence spectroscopy of the dyes were determined in various solvents. The results showed that the maximal absorption wavelength of 2‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C1 ) and 4‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C2 ) exhibited almost independence on the solvent polarity. While as contrast, the maximal fluorescence wavelength of the dyes showed somewhat dependence on the solvent polarity. In particular, C1 displayed well‐separated dual fluorescence spectroscopy. The second fluorescence peak was characterized with an "abnormal" fluorescence emission wavelength in aprotic solvents with large Stokes shift (ca. 140 nm in THF), which was much more than normal Stokes shift (ca. 30 nm in THF). This emission spectroscopy could be assigned to ESIPT emission. On the other hand, the ESIPT fluorescence of C1 was much reduced or lost in the protic solvents. While, only normal fluorescence emission was detected in various solvents. Although the absorption maxima of C1 exhibited about 10 nm red‐shift with respect to those of C2 , the normal fluorescence maxima of C1 and C2 were almost identical in various solvents. These results suggested that C1 could undergo ESIPT, but C2 was not able to proceed ESIPT. The molecular geometry optimization of phototautomers in the ground electronic state (S0) was carried out with HF method (Hartree‐Fock) and at DFT level (Density Functional Theory) using B3LYP both, while the CIS was employed to optimize the geometries of the first singlet excited state (S1) of the phototautomers of C1 and C2 respectively. The properties of the ground state and the excited state of the phototautomers of C1 and C2 , including the geometrical parameter, the energy, the frontier orbits, the Mulliken charge and the dipole moment change were performed and compared completely. The data were analyzed further based on our experimental results. Furthermore, the absorption and fluorescence spectra were calculated in theory and compared with the measured ones. The rate constant of internal proton transfer (9.831×1011 s?1) of C1 was much lower than that of salicylidene methylamine ( C3 , 2.045×1015 s?1), which was a typical Schiff base compound and was well demonstrated to undergo ESIPT easily under photoexcitation.  相似文献   

20.
A benzimidazolium based thiourea conjugate (IL) receptor has been designed, synthesized and characterized spectroscopically. The prepared receptor (IL) shows the sensitive and selective ratiometric sensing for HSO4? over the other anions as evident by UV–visible absorption and fluorescence spectroscopy. With the addition of HSO4? ion, the parent absorption band of IL in UV–visible absorption at 311 nm was shifted to 261 nm having an isosbestic point at 294 nm, which clearly indicates an interaction between HSO4? ion and the IL. Further, upon excitation at 310 nm, the fluorescence emission of IL at 455 nm was observed. Furthermore, the gradual addition of HSO4? ion results in a drastic decrease in emission at 455 nm and simultaneous appearance of a new emission band at 379 nm with isosbestic point at 430 nm was observed. The binding mechanism of HSO4? with IL was also explored with 1H NMR titration, mass spectrometry and DFT calculations. These studies revealed the involvement of hydrogen bonding with –NH (thiourea) and –CH (benzimidazolium) functionalities towards the recognition of HSO4? ion. The association constant (Ka) and lowest detection limits for HSO4? were determined to be 5.437 × 104 M?1 and 5.0 nM, respectively. The real sample analysis by synthesized sensor probe for HSO4? was also performed which shows the practical applicability of the developed sensor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号