首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The increasing resistance of bacteria to antibiotics is a serious problem, caused in part by excessive and improper use of these drugs. One alternative to traditional antibiotic therapy is photodynamic antimicrobial chemotherapy (PACT) which is based on the use of a photosensitizer (PS), activated by illumination with visible light. The poor penetration of visible light through the skin limits the application of PACT to the treatment of skin infections or the use of invasive procedures. To overcome this problem we report the exploitation of light emitted as a result of the chemiluminescent reaction of luminol to excite the PS and we call this process chemiluminescent photodynamic antimicrobial therapy (CPAT). We studied the effect of free and liposome-encapsulated PS (methylene blue or toluidine blue) on bacteria under excitation by either white external light or chemiluminescence emitted by free or liposome-enclosed luminol. PACT showed slightly better performance that CPAT for free and encapsulated PS for both types of bacteria. CPAT resulted in a three log suppression of Staphylococcus aureus and two log suppression of Escherichia coli growth. The use of CPAT may prove to be a novel and more effective form of antimicrobial therapy, particularly for internal infections not easily accessible to traditional PACT.  相似文献   

2.
Fullerenes are soccer ball-shaped molecules composed of carbon atoms, and, when derivatized with functional groups, they become soluble and can act as photosensitizers. Antimicrobial photodynamic therapy combines a nontoxic photosensitizer with harmless visible light to generate reactive oxygen species that kill microbial cells. We have compared the antimicrobial activity of six functionalized C(60) compounds with one, two, or three hydrophilic or cationic groups in combination with white light against gram-positive bacteria, gram-negative bacteria, and fungi. After a 10 min incubation, the bis- and tris-cationic fullerenes were highly active in killing all tested microbes (4-6 logs) under conditions in which mammalian cells were comparatively unharmed. These compounds performed significantly better than a widely used antimicrobial photosensitizer, toluidine blue O. The high selectivity and efficacy exhibited by these photosensitizers encourage further testing for antimicrobial applications.  相似文献   

3.
Persister bacteria tolerate bactericidal antibiotics due to transient and reversible phenotypic changes. As these bacteria can limit the effectiveness of antibiotics to eradicate certain infections, their elimination is a relevant issue. Photodynamic therapy seems suitable for this purpose, but phenotypic tolerance to it has also been reported for Pseudomonas aeruginosa . To test whether any phenotypic feature could confer tolerance against both antibiotics and photoinactivation, survivors from exposures to light in the presence of methylene blue were treated with ofloxacin, an antibiotic effective on nongrowing bacteria. Susceptibility to ofloxacin was normal in these bacteria in spite of their increased ability to survive photodynamic inactivation, suggesting the absence of cross‐tolerance. It thus seemed possible to use one of these treatments to eliminate bacteria which had phenotypic tolerance to the other. To test this strategy, persister bacteria emerging from ofloxacin treatments were submitted to the action of light and methylene blue while the antibiotic remained in the bacterial suspension. Persisters lost their clonogenic ability under these conditions and the effects of the treatments seemed to be synergistic. These observations suggest that photodynamic antimicrobial therapy could be used as a complement to antibiotic treatments to eliminate persister bacteria from localized infections.  相似文献   

4.
Resistance to antimicrobial drugs is an impending healthcare problem of growing significance. In the post-antibiotic era, there is a huge push to develop new tools for effectively treating bacterial infections. Photodynamic therapy involves the use of a photosensitizer that is activated by the use of light of an appropriate wavelength in the presence of oxygen. This results in the generation of singlet oxygen molecules that can kill the target cells, including cancerous cells and microbial cells. Photodynamic therapy is shown to be effective against parasites, viruses, algae, and bacteria. To achieve high antimicrobial activity, a sufficient concentration of photosensitizer should enter the microbial cells. Generally, photosensitizers tend to aggregate in aqueous environments resulting in the weakening of photochemical activity and lowering their uptake into cells. Nanocarrier systems are shown to be efficient in targeting photosensitizers into microbial cells and improve their therapeutic efficiency by enhancing the internalization of photosensitizers into microbial cells. This review aims to highlight the basic principles of photodynamic therapy with a special emphasis on the use of nanosystems in delivering photosensitizers for improving antimicrobial photodynamic therapy.  相似文献   

5.
The effectiveness of intratumoral photoradiation in photodynamic therapy (PDT) using a polyporphyrin photosensitizer was studied in the RT-2 rat glioma model. One week after intracerebral implantation of RT-2 cells, experimental rats received a single i.p. injection of 2 mg/kg of Photofrin. After administration of the photosensitizer (48 h), the tumors were partially resected and the exposed cavity was irradiated with 15 J of laser light at a wavelength of 630 nm. Further treatment with a large craniectomy significantly enhanced rat survival. Control rats which received no photosensitizer but were treated with surgery, alone or in combination with laser irradiation, succumbed from early tumor recurrence. Photodynamic therapy without decompressive surgery resulted in hemorrhagic infarction of residual tumor and adjacent brain with focal cerebral edema which resulted in cerebral herniation and early death. Our results indicate that photodynamic therapy is effective in treating residual brain tumor but at the expense of brain tissue surrounding the tumor. Unless relieved, intracranial pressure from photodynamic therapy-associated cerebral edema in this animal model resulted in shortened survival.  相似文献   

6.
The cyanine photosensitizer, lumin, is a potent macrophage activating agent: 4 days after administration of small amounts of lumin to mice (20-40 ng mouse-1), peritoneal macrophages exhibited a greatly enhanced Fc-mediated ingestion activity; higher doses (more than 3000 ng mouse-1) did not have this effect. The in vitro photodynamic activation of macrophages in mouse peritoneal cells exposed to white fluorescent light (3 J m-2 s-1) was also studied in media containing various concentrations of lumin. A short light exposure (45 J m-2) with 10 ng lumin ml-1 produced a maximum ingestion activity of macrophages. Lumin has absorption peaks at 670 and 760 nm. Therefore we designed experiments in which peritoneal cells were exposed to a red fluorescent light (emission, 660 nm; 0.5 J m-2 s-1). In a medium containing 3 ng lumin ml-1 with 7.5 J m-2 of red light, a markedly enhanced ingestion activity of macrophages was observed. The photodynamic treatment of peritoneal macrophages alone did not stimulate phagocytic activity, but the photodynamic treatment of a mixture of non-adherent (B and T) cells and macrophages resulted in a greatly enhanced ingestion activity of macrophages. Thus non-adherent cells are required for the photodynamic activation of macrophages, implying that an activating factor is generated within the non-adherent cells and transmitted to the macrophages. This hypothesis was confirmed by the observation that co-cultivation of photodynamically treated non-adherent cells with untreated macrophages resulted in a greatly enhanced ingestion capacity.  相似文献   

7.
Methylene blue is a very strong photoactive dye that has an absorption peak (668 nm) that corresponds well to a popular low-cost diode laser. However, it has not been used in photodynamic tumor therapy and immunodiagnostics because it cannot be covalently coupled to protein. Therefore, methylene blue derivatives having a succinimido or maleimido functional group were synthesized and coupled to antibody, serum albumin and transfemn proteins. Incorporation of dye into antibody protein at high ratios (more than three per molecule) caused precipitation and loss of antibody activity. Inclusion of one or more carboxylic acid residues in the methylene blue derivative before coupling to protein alleviated the precipitation problem, and up to 36 methylene blue dye molecules could be attached to an antibody fragment using bovine serum protein as a carrier. Methylene blue derivatives and protein complexes formed from them oxidized luminol when stimulated with red light. The new dye conjugates were used in an optically pumped chemiluminescence immunoassay for α-fetoprotein. These compounds and techniques should also be useful for photodynamic tumor therapy where it is desired to attach a red-absorbing photoactive dye to antibody protein.  相似文献   

8.
This paper reports the synthesis and characterization of surface-enhanced Raman scattering (SERS) label-tagged gold nanostars, coated with a silica shell containing methylene blue photosensitizing drug for singlet-oxygen generation. To our knowledge, this is the first report of nanocomposites possessing a combined capability for SERS detection and singlet-oxygen generation for photodynamic therapy. The gold nanostars were tuned for maximal absorption in the near-infrared (NIR) spectral region and tagged with a NIR dye for surface-enhanced resonance Raman scattering (SERRS). Silica coating was used to encapsulate the photosensitizer methylene blue in a shell around the nanoparticles. Upon 785 nm excitation, SERS from the Raman dye is observed, while excitation at 633 nm shows fluorescence from methylene blue. Methylene-blue-encapsulated nanoparticles show a significant increase in singlet-oxygen generation as compared to nanoparticles synthesized without methylene blue. This increased singlet-oxygen generation shows a cytotoxic effect on BT549 breast cancer cells upon laser irradiation. The combination of SERS detection (diagnostic) and singlet-oxygen generation (therapeutic) into a single platform provides a potential theranostic agent.  相似文献   

9.
Phototherapy is routinely used for the treatment of various skin conditions and targeted therapy of superficial cancers. However, the molecular mechanisms behind their biological effects and the need for efficacy enhancing photosensitizers are not well addressed. Particularly, not much is known about the inherent effect of light from the visible spectrum on cytokine release and its downstream effects in keratinocytes and immune cells located in skin and therefore exposed to light. To address this, we delivered calibrated doses of well‐defined light qualities (380 to 660 nm) to cocultures of human keratinocytes and macrophage/dendritic cells in the absence or presence of the commonly used photosensitizer 8‐methoxypsoralen (8‐MOP ). The experiments identified IL ‐4 as a key effector cytokine released by this coculture model with need for 8‐MOP in the UVA1/blue (380 nm) and no requirement for photosensitizer in the red light spectrum (627 nm). 3D organotypic skin cultures treated with IL ‐4 showed thickening of the epidermal layer and delayed differentiation. However unlike IL ‐4 and UVA1/blue light treatment, red light did not reduce the expression of keratinocyte differentiation markers or increase signs of photo‐oxidative damage. This supports the application of isolated red light as a possible alternative for photo‐immunotherapy without need for additional photosensitizers.  相似文献   

10.
Antimicrobial photodynamic therapy is a recently developed therapeutic option that combines a non-toxic photosensitizer with harmless visible light to damage the microbial cell. Hypocrellin A (HA), a natural occurring lipid-soluble perylenequinone pigment, has gained considerable interest since its anticancer and antiviral activities have been reported. Here, we examined the antimicrobial activity of HA against Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria (Escherichia coli, Salmonella typhimurium). The results indicate that HA has a photodynamic antimicrobial activity against both Gram-positive and Gram-negative bacteria when CaCl(2) or MgCl(2) was employed. A loose binding has been established between HA and the organisms. Molecular oxygen is significantly involved in the photodynamic action of HA. Furthermore, HA maintains a photodynamic activity in terms of both types I and II reactions. Our results confirm the potential of HA to be used as a photosensitizer in antimicrobial photodynamic therapy.  相似文献   

11.
The complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy. This study was aimed to synthesize a polycationic chitosan-conjugated rose bengal (CSRB) photosensitizer and test its antibiofilm efficacy on Enterococcus faecalis (gram positive) and Pseudomonas aeruginosa (gram negative) using photodynamic therapy. During experiments, CSRB was tested along with an anionic photosensitizer rose bengal (RB) and a cationic photosensitizer methylene blue (MB) for uptake and killing efficacy on 7-day-old E. faecalis and P. aeruginosa biofilms. Microbiological culture based analysis was used to analyze the cell viability, while laser scanning confocal microscopy (LSCM) was used to examine the structure of biofilm. The synthesized CSRB showed absorbance spectrum similar to the RB. The concentration of CSRB uptaken by both the bacterial biofilms was significantly higher than that of RB and MB (P < 0.05). Photoactivation resulted in significantly higher elimination of both bacterial biofilms sensitized with CSRB than RB and MB. The structure of biofilm under LSCM was found to be disrupted following CSRB treatment. The present study highlighted the importance of inherent cell membrane permeabilizing effect of chitosan and increased cell/biofilm uptake of conjugated photosensitizer to produce significant antibiofilm efficacy during photodynamic therapy.  相似文献   

12.
Nowadays multi-drug resistant microorganisms is a serious public health problem worldwide. To overcome it, new antimicrobial strategies have been developed. Among them, antimicrobial photodynamic therapy is an efficient tool against various micro-organisms in different medical and healthcare fields. The antimicrobial photodynamic protocol is based on the interaction of a photosensitizer, molecular oxygen, and an appropriate light source. Herein, we described the main physical and chemical proprieties of curcumin, an useful natural photosensitizer, including its degradation pathways, analytical methods for quantification, extraction method, synthetic methodologies, and pharmaceutical formulations used. Moreover, a comprehensive review of the past 10 years (2010−2019) concerning the application of curcumin as photosensitizer against microorganisms is described and discussed.  相似文献   

13.
Two human fibroblast cell lines were treated with varying concentrations of the photosensitizer Photosan III for different incubation times, and subsequently irradiated with an He-Ne laser. The biological parameter investigated was trypan blue exclusion by the cells. For each given drug concentration and incubation time, a threshold fluence was observed, which resulted in the complete loss of the cell membrane integrity. Using the equation tcr = b X CPS-a, the correlation between threshold light dose (tcr) and the concentration of the photosensitizer (CPS) can be described for all three incubation times (10 min, 2 h, 20 h) characterized by different sets of a and b values. This power function implies that these parameters are inversely correlated to each other. A correlation of incubation time with critical exposure time for different drug concentrations gave saturation curves. No differences were observed between the two cell lines. The method applied may be useful for a fast comparison of the sensitizing efficiencies of different treatment protocols for the in vitro investigation of photodynamic laser therapy.  相似文献   

14.
Photodynamic therapy could provide an alternative to antibiotics for the treatment of local infections since a wide range of microorganisms have been shown to be susceptible to killing by photodynamic action (PDA) in vitro. The purpose of this study was to determine whether PDA was also able to affect the potency of two key bacterial virulence factors--lipopolysaccharide (LPS) and proteases. Suspensions of LPS from Escherichia coli and culture supernatants containing proteases of Pseudomonas aeruginosa were exposed to red light in the presence of toluidine blue O (TBO). The activity of each virulence factor was determined before and after irradiation. The limulus amoebocyte lysate (LAL) assay and the induction of proinflammatory cytokine (interleukin-8 and -6) release from human peripheral blood mononuclear cells (PBMC) were used for assessing the biological activity of LPS. Protease activity was quantified by azocasein hydrolysis. The biological activities of the LPS (both the LAL activity and its ability to induce cytokine release from PBMC) and the proteases were reduced significantly by irradiation with red light in the presence of TBO in a dose-dependent manner with respect to both the light energy dose and the TBO concentration. The ability of TBO-mediated PDA to reduce the activities of key virulence factors may be an additional benefit of using light-activated antimicrobial agents in the treatment of infectious diseases.  相似文献   

15.
通过Knoevenagel缩合反应制备了一个具有溶酶体靶向的近红外光敏剂IMBDP-Lys, 用于双光子荧光成像和光动力治疗. IMBDP-Lys由2个吲哚吗啉功能团连接到氟硼二吡咯(BODIPY)母核的3?位和8?位构筑而成, 是一种重原子诱导的光敏剂. 采用高斯09W理论计算光敏剂S1态和T2态能量值相差0.12 eV, 可以有效地发生系间窜越. 在二氯甲烷溶液中, 光敏剂IMBDP-Lys的最大吸收波长为631 nm, 最大发射波长为684 nm. 在 660 nm的光照下, 以亚甲基蓝为参比, 单线态氧量子产率经计算为48.3%. 此外, 含有2个吗啉基团的光敏剂IMBDP-Lys具有良好的生物相容性和精准的靶向能力, 可以快速地进入斑马鱼体内进行双光子荧光成像, 并且与溶酶体绿色染料Lyso-Tracker Green共定位系数为0.95. 溴化噻唑蓝四氮唑(MTT)实验结果表明, 光敏剂具有低的暗毒性(≥85%)和高的光毒性(IC50=0.52 μmol/L). 在660 nm的光照下, 利用活性氧荧光探针2’,7’-二氯二氢荧光素二乙酸酯(DCFH-DA)证明光敏剂可以产生活性氧, 同时吖啶橙/溴化乙锭(AO/EB)染色实验和细胞迁移实验表明产生的活性氧不仅能诱导A549细胞凋亡, 还能有效地抑制肿瘤细胞迁移. 因此, 近红外光敏剂IMBDP-Lys在双光子荧光成像和溶酶体靶向的光动力治疗中具有重要的应用价值.  相似文献   

16.
A newly synthesized diethylene glycol functionalized chlorin-type photosensitizer, lemuteporfin, was characterized for use in photodynamic therapy (PDT) in a panel of in vitro and in vivo test systems. The photosensitizer was highly potent, killing cells at low nanomolar concentrations upon exposure to activating light. The cellular uptake of lemuteporfin was rapid, with maximum levels reached within 20 min. Mitogen-activated lymphoid cells accumulated more of the lemuteporfin than their quiescent equivalents, supporting selectivity. Photosensitizer fluorescence in the skin increased rapidly within the first few minutes following intravenous administration to mice, then decreased over the next 24 h. Skin photosensitivity reactions indicated rapid clearance of the photosensitizer. Intravenous doses as low as 1.4 micromol/kg combined with exposure to 50 J/cm2 red light suppressed tumor growth in a mouse model. In conclusion, this new benzoporphyrin was found to be an effective photosensitizer, showing rapid uptake and clearance both in vitro and in vivo. This rapid photosensitization of tumors could be useful in therapies requiring a potent, rapidly accumulating photosensitizer, while minimizing the potential for skin photosensitivity reactions to sunlight following treatment.  相似文献   

17.
This study evaluated the mechanisms involved and the influence of photosensitizer solvent in the killing of Enterococcus faecalis using photodynamic therapy (PDT). Enterococcus faecalis cells incubated with 100 microm methylene blue dissolved in water and in MIX (a mixture of glycerol:ethanol:water) were irradiated with 664 nm diode laser (63.69 J cm(-2)). The effect of PDT on the viability of bacteria, and the functional integrity of cell wall, chromosomal DNA and membrane proteins were analyzed. The bactericidal action of PDT was significantly higher when a MIX-based photosensitizer solvent was used (P<0.001). Fluorimetric and fluorescence microscopy-based analysis showed the functional impairment of E. faecalis cell wall which was significantly higher when a MIX-based photosensitizer solvent was used (P<0.001). PDT with MIX-based photosensitizer solvent showed extensive damage to chromosomal DNA. However, both PDT conditions showed similar trend in the degradation of membrane proteins, although cross-linked proteins were evident only in PDT conducted with MIX-based photosensitizer solvent. The findings from our study showed that PDT destroyed the functional integrity of cell wall, DNA and membrane proteins of E. faecalis. The degrees of damage on these targets were influenced by the photosensitizer solvent used during PDT.  相似文献   

18.
The photodynamic effect of a photoproduct of protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) was investigated in WiDr cells, a human adenocarcinoma cell line. The fluorescence excitation and emission spectra of PpIX and the photoproduct were measured. After 1, 3 or 5 min exposure of the ALA-incubated cells to 140 mW/cm2 light at 635 nm, the photoproduct — the chlorin photoprotoporphyrin (Ppp), had an emission band around 670 nm. The Ppp excitation peak at 670 nm is well separated from the PpIX peak at 635 nm. The outcome of photodynamic therapy (PDT) was determined by measuring intracellular fluorescence intensity of propidium iodide (PI) 2 h following PDT and methylene blue (MB) staining 24 h following PDT. A significant increase in the fluorescence intensity of PI was noted when the ALA-loaded cells were exposed to 670 nm light after exposure to 635 nm, indicating enhanced cell membrane inactivation induced by the photodynamic action of the photoproduct. However, the fraction of the cells that survived following the same treatment as measured by MB staining was not significantly affected based on an analysis of variance. The fluorescence of PpIX decayed significantly during 635 nm light exposure. Exposure to light at 670 nm does not lead to any photodegradation of PpIX. The fluorescence of Ppp was bleached during 670 nm light exposure. Exposure of Ppp at 670 nm gives no PpIX back. Thus, the phototransformation of PpIX to Ppp is probably not a reversible process.  相似文献   

19.
Liposomes capable of generating photons of blue light in situ by triplet–triplet annihilation upconversion of either green or red light, were prepared. The red‐to‐blue upconverting liposomes were capable of triggering the photodissociation of ruthenium polypyridyl complexes from PEGylated liposomes using a clinical grade photodynamic therapy laser source (630 nm).  相似文献   

20.
Archaea are considered third, independent domain of living organisms besides eukaryotic and bacterial cells. To date, no report is available of photodynamic inactivation (PDI) of any archaeal cells. Two commercially available photosensitizers (SAPYR and TMPyP) were used to investigate photodynamic inactivation of Halobacterium salinarum. In addition, a novel high-throughput method was tested to evaluate microbial reduction in vitro. Due to the high salt content of the culture medium, the physical and chemical properties of photosensitizers were analyzed via spectroscopy and fluorescence-based DPBF assays. Attachment or uptake of photosensitizers to or in archaeal cells was investigated. The photodynamic inactivation of Halobacterium salinarum was evaluated via growth curve method allowing a high throughput of samples. The presented results indicate that the photodynamic mechanisms are working even in high salt environments. Either photosensitizer inactivated the archaeal cells with a reduction of 99.9% at least. The growth curves provided a fast and precise measurement of cell viability. The results show for the first time that PDI can kill not only bacterial cells but also robust archaea. The novel method for generating high-throughput growth curves provides benefits for future research regarding antimicrobial substances in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号