首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As an antitumor modality based on sensitizer photoexcitation by tumor-directed light, photodynamic therapy (PDT) has the advantage of being site-specific compared with conventional chemotherapy or radiotherapy. Like these other therapies, however, PDT is often limited by pre-existing or acquired resistance. One type of resistance, discovered in the author’s laboratory, involves nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS) in tumor cells. Using human breast, prostate and brain cancer cell lines, we have shown that iNOS is dramatically upregulated after a moderate PDT challenge sensitized by 5-aminolevulinic acid-induced protoporphyrin IX. The elevated NO not only elicited a greater resistance to cell photokilling, but also an increase in the growth and migration/invasion rate of surviving cells. Greater iNOS/NO-based resistance was also demonstrated at the in vivo level using a breast tumor xenograft model. More recent studies have shown that NO from PDT-targeted cells can stimulate a progrowth/promigration response in non-targeted bystander cells. These novel effects of NO, their negative impact on PDT efficacy and possible mitigation thereof by anti-iNOS/NO pharmacologic agents will be discussed.  相似文献   

2.
Many tumor cells produce nitric oxide (NO) as an antiapoptotic/progrowth molecule which also promotes antiogenesis and tumor expansion. This study was designed to examine possible antagonistic effects of endogenous NO on tumor eradication by photodynamic therapy (PDT). Using COH-BR1 breast cancer cells sensitized in mitochondria with 5-aminolevulinic acid (ALA)-generated protoporphyrin IX as a model for ALA-based PDT, we found that caspase-9 activation and apoptotic death following irradiation were strongly enhanced by 1400W, an inhibitor of inducible nitric oxide synthase (iNOS). RT-PCR and Western analyses revealed a substantial upregulation of both iNOS mRNA and protein, beginning ca 4 h after irradiation and persisting for at least 20 h. Accompanying this was a strong 1400W-inhibitable increase in intracellular NO, as detected with the NO probe, DAF-2-DA. Short hairpin RNA-based iNOS knockdown in COH-BR1 cells dramatically reduced NO production under photostress while enhancing caspase-9 activation and apoptosis. These findings suggest that cytoprotective iNOS/NO induction in PDT-treated tumor cells could reduce treatment efficacy, and point to pharmacologic intervention with iNOS inhibitors for counteracting this.  相似文献   

3.
Expression of proteins related to cell surveillance has been described in tumors presenting resistance to photodynamic therapy (PDT). The aim of this study was to verify whether there was upregulation of proteins related to resistance in oral squamous cell carcinoma (OSCC) after PDT. OSCC was chemically induced in rats and treated after one cycle of PDT mediated by 5‐aminolevulinic acid (5‐ALA‐PDT). Immunolabeling of p‐NFκB, Bcl‐2, survivin, iNOS, p‐Akt, p‐mTOR and cyclin D1 was performed after the treatment. There was increased expression of Bcl‐2 (P = 0.008), iNOS (P = 0.020), p‐Akt (P = 0.020) and p‐mTOR (P = 0.010) by surviving neoplastic cells after PDT when compared to the control. In conclusion, after one cycle of 5‐ALA‐mediated PDT, Bcl‐2, p‐Akt, p‐mTOR and iNOS were upregulated in neoplastic cells of OSCC, suggesting an activation of antiapoptosis and cell proliferation pathways. This fact must be considered in the establishment of PDT protocols for OSCC treatment, mainly those in which PDT will be combined with chemotherapy drugs targeted at the studied proteins.  相似文献   

4.
The concept of metronomic photodynamic therapy (mPDT) is presented, in which both the photosensitizer and light are delivered continuously at low rates for extended periods of time to increase selective tumor cell kill through apoptosis. The focus of the present preclinical study is on mPDT treatment of malignant brain tumors, in which selectivity tumor cell killing versus damage to normal brain is critical. Previous studies have shown that low‐dose PDT using 5‐aminolevulinic acid (ALA)‐induced protoporphyrin IX(PpIX) can induce apoptosis in tumor cells without causing necrosis in either tumor or normal brain tissue or apoptosis in the latter. On the basis of the levels of apoptosis achieved and model calculations of brain tumor growth rates, metronomic delivery or multiple PDT treatments, such as hyperfractionation, are likely required to produce enough tumor cell kill to be an effective therapy. In vitro studies confirm that ALA‐mPDT induces a higher incidence of apoptotic (terminal deoxynucleotidyl transferase‐mediated 2′‐deoxyuridine 5′‐triphosphate, sodium salt nick‐end labeling positive) cells as compared with an acute, high‐dose regimen (ALA‐αPDT). In vivo, mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of devices for extended light delivery while allowing unencumbered movement. In rat models, ALA administration via the drinking water has been accomplished at very high doses (up to 10 times therapeutic dose) for up to 10 days, and ex vivo spectro‐fluorimetry of tumor (9L gliosarcoma) and normal brain demonstrates a 3–4 fold increase in the tumor‐to‐brain ratio of PpIX concentration, without evidence of toxicity. After mPDT treatment, histological staining reveals extensive apoptosis within the tumor periphery and surrounding microinvading colonies that is not evident in normal brain or tumor before treatment. Prototype light sources and delivery devices were found to be practical, either using a laser diode or light‐emitting diode (LED) coupled to an implanted optical fiber in the rat model or a directly implanted LED using a rabbit model. The combined delivery of both drug and light during an extended period, without compromising survival of the animals, is demonstrated. Preliminary evidence of selective apoptosis of tumor under these conditions is presented.  相似文献   

5.
Photodynamic therapy (PDT) with the pro-drugs 5-aminolevulinic acid (ALA) or methyl aminolevulinate (MAL) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. To potentially increase accumulation of the photosensitizer, protoporphyrin IX (PpIX), within tumor cells an iron chelator can be employed. This study analyzed the effects of ALA/MAL-induced PDT combined with the iron chelator 1, 2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) on the accumulation of PpIX in human glioma cells in vitro. Cells were incubated for 0, 3 and 6 h with various concentrations of ALA/MAL with or without CP94 and the resulting accumulations of PpIX, which naturally fluoresces, were quantified prior to and following light irradiation. In addition, counts of viable cells were recorded. The use of CP94 in combination with ALA/MAL produced significant enhancements of PpIX fluorescence in human glioma cells. At the highest concentrations of each prodrug, CP94 enhanced PpIX fluorescence significantly at 3 h for ALA and by more than 50% at 6 h for MAL. Cells subsequently treated with ALA/MAL-induced PDT in combination with CP94 produced the greatest cytotoxicity. It is therefore concluded that with further study CP94 may be a useful adjuvant to photodiagnosis and/or PpIX-induced PDT treatment of glioma.  相似文献   

6.
Aminolevulinic acid (ALA)‐mediated protoporphyrin IX (PpIX) production is being explored for tumor fluorescence imaging and photodynamic therapy (PDT). As a prodrug, ALA is converted in heme biosynthesis pathway to PpIX with fluorescent and photosensitizing properties. To better understand the role of heme biosynthesis enzymes in ALA‐mediated PpIX fluorescence and PDT efficacy, we used lentiviral shRNA to silence the expression of porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD) and ferrochelatase (FECH) in SkBr3 human breast cancer cells. PBGS and PBGD are the first two cytosolic enzymes involved in PpIX biosynthesis, and FECH is the enzyme responsible for converting PpIX to heme. PpIX fluorescence was examined by flow cytometry and confocal fluorescence microscopy. Cytotoxicity was assessed after ALA‐mediated PDT. Silencing PBGS or PBGD significantly reduced ALA‐stimulated PpIX fluorescence, whereas silencing FECH elevated basal and ALA‐stimulated PpIX fluorescence. However, compared with vector control cells, the ratio of ALA‐stimulated fluorescence to basal fluorescence without ALA was significantly reduced in all knockdown cell lines. PBGS or PBGD knockdown cells exhibited significant resistance to ALA‐PDT, while increased sensitivity to ALA‐PDT was found in FECH knockdown cells. These results demonstrate the importance of PBGS, PBGD and FECH in ALA‐mediated PpIX fluorescence and PDT efficacy.  相似文献   

7.
Conventional photodynamic therapy with aminolevulinate (ALA‐PDT) selectively induces apoptosis in diseased cells and is highly effective for treating actinic keratoses. However, similar results are achieved only in a subset of patients with cutaneous T‐cell lymphoma (CTCL). Our previous work shows that the apoptotic resistance of CTCL correlates with low expression of death receptors like Fas cell surface death receptor (FAS), and that methotrexate upregulates FAS by inhibiting the methylation of its promoter, acting as an epigenetic derepressor that restores the susceptibility of FAS‐low CTCL to caspase‐8‐mediated apoptosis. Here, we demonstrate that methotrexate increases the response of CTCL to ALA‐PDT, a concept we refer to as epigenetically enhanced PDT (ePDT). Multiple CTCL cell lines were subjected to conventional PDT versus ePDT. Apoptotic biomarkers were analyzed in situ with multispectral imaging analysis of immunostained cells, a method that is quantitative and 5× more sensitive than standard immunohistology for antigen detection. Compared to conventional PDT or methotrexate alone, ePDT led to significantly greater cell death in all CTCL cell lines tested by inducing greater activation of caspase‐8‐mediated extrinsic apoptosis. Upregulation of FAS and/or tumor necrosis factor‐related apoptosis‐inducing ligand pathway components was observed in different CTCL cell lines. These findings provide a rationale for clinical trials of ePDT for CTCL.  相似文献   

8.
In this work, we studied the in vitro interactions between aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) and nitric oxide (NO), as well as the interactions between ALA, porphyrins and some NO donors and precursors. We employed three murine adenocarcinoma cell lines: LM2, which does not produce NO; LM3, which produces NO, and LM3-SNP, a variant of LM3 resistant to NO producing the same amount of NO as the parental. We did not find cross-resistance between NO-induced cytotoxicity and ALA-PDT. In spite of the lower porphyrin synthesis, LM2 cells show the highest sensitivity to ALA-PDT. However, we hypothesised that this is not related to the lack of endogenous NO production, because modulation of NO levels did not modify the response to PDT in any of the cell lines.

Two unexpected results were found: the enhancement of NO production from the donor sodium nitroprusside (SNP) induced by ALA in both cells and medium, and the inhibition by ALA of NO production from arginine. We also found that SNP strongly protected the cells from ALA-PDT by impairing porphyrin biosynthesis as a consequence of an inhibition of the enzyme ALA dehydratase. We were not able to evaluate the action of NO derived from SNP because of the unexpected porphyrin impairment. On the other hand, impairment of NO from Arginine driven by ALA, although not modulating in vitro the ALA-PDT response, by increasing in vivo blood flow, may be contributing to the mechanism of tumour cures.  相似文献   


9.
5‐aminolevulinic acid (5‐ALA )‐based photodynamic therapy (PDT ) has been successfully used in the treatment of cancers. However, the mechanism of 5‐ALA transportation into cancer cells is still not fully elucidated. Previous studies have confirmed that the efficiency of 5‐ALA‐PDT could be affected by the membrane skeleton protein 4.1R. In this study, we investigated the role of 4.1R in the transport of 5‐ALA into cells. Wild‐type (4.1R+/+) and 4.1R gene knockout (4.1R−/−) mouse embryonic fibroblast (MEF ) cells were incubated with 1 mm 5‐ALA and different concentrations of specific inhibitors of GABA transporters GAT (1‐3). Our results showed that the inhibition of GAT 1 and GAT 2 in particular markedly attenuated the intracellular PpIX production, reactive oxygen species (ROS ) level and 5‐ALA ‐induced photodamage. However, the inhibition of GAT 3 did not show such effects. Further research showed that 4.1R−/− MEF cells had a lower expression of GAT 1 and GAT 2 than 4.1R+/+ MEF cells. Additionally, 4.1R directly bound to GAT 1 and GAT 2. Taken together, GAT 1 and GAT 2 transporters are involved in the uptake of 5‐ALA in MEF cells. 4.1R plays an important role in transporting 5‐ALA into cells via at least partly interaction with GAT 1 and GAT 2 transporters in 5‐ALA ‐PDT .  相似文献   

10.
Endogenous protoporphyurin IX (PpIX) synthesis after δ-aminolaevulinic acid (ALA) administration occurs in cancer cells in vivo; PpIX, which has a short half-life, may thus constitute a good alternative to haematoporphyrin derivative (HPD) (or Photofrin). This study assesses the ability of the human hepatocarcinoma cell line HepG2 to synthesize PpIX in vitro from exogenous ALA, and compares ALA-induced toxicity and phototoxicity with the photodynamic therapy (PDT) effects of HPD on this cell line.

ALA induced a dose-dependent dark toxicity, with 79% and 66% cell survival for 50 and 100 μg ml−1 ALA respectively after 3 h incubation; the same treatment, followed by laser irradiation (λ = 632 nm, 25 J cm−2), induced a dose-dependent phototoxicity, with 54% and 19% cell survival 24 h after PDT. Whatever the incubation time with ALA, a 3 h delay before light exposure was found to be optimal to reach a maximum phototoxicity.

HPD induced a slight dose-dependent toxicity in HepG2 cells and a dose- and time-dependent phototoxicity ten times greater than that of ALA-PpIX PDT. After 3 h incubation of 2.5 and 5 μg ml−1 HPD, followed by laser irradiation (λ = 632 nm, 25 J cm−2), cell survival was 59% and 24% respectively at 24 h.

Photoproducts induced by light irradiation of porphyrins absorb light in the red spectral region at longer wavelengths than the original porphyrins. The possible enhancement of PDT effects after HepG2 cell incubation with ALA or HPD was investigated by irradiating cells successively with red light (λ = 632 nm) and light (λ = 650 nm). The total fluence was kept constant at 25 J cm−2. For both HPD and ALA-PpIX PDT, phototoxicity was lower when cells were irradiated for increased periods with λ = 650 nm light than with λ = 632 nm light alone. This suggests that any photoproducts involved either have a short life or are poorly photoreactive.

Not all cell lines can synthesize PpIX after ALA incubation. HepG2 cells, which can synthesize enzymes and precursors of endogenous porphyrin synthesis, represent a good in vitro model for experiments using ALA-PpIX PDT. In addition, ALA-PpIX PDT may represent a new, specific treatment for hepatocarcinomas.  相似文献   


11.
Aminolevulinic acid (ALA) is a prodrug that is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) for tumor fluorescence detection and photodynamic therapy (PDT). The iron chelator deferoxamine (DFO) has been widely used to enhance PpIX accumulation by inhibiting the iron‐dependent bioconversion of PpIX to heme, a reaction catalyzed by ferrochelatase (FECH). Tumor response to DFO treatment is known to be highly variable, and some tumors even show no response. Given the fact that tumors often exhibit reduced FECH expression/enzymatic activity, we examined how reducing FECH level affected the DFO enhancement effect. Our results showed that reducing FECH level by silencing FECH in SkBr3 breast cancer cells completely abrogated the enhancement effect of DFO. Although DFO enhanced ALA‐PpIX fluorescence and PDT response in SkBr3 vector control cells, it caused a similar increase in MCF10A breast epithelial cells, resulting in no net gain in the selectivity toward tumor cells. We also found that DFO treatment induced less increase in ALA‐PpIX fluorescence in tumor cells with lower FECH activity (MDA‐MB‐231, Hs 578T) than in tumor cells with higher FECH activity (MDA‐MB‐453). Our study demonstrates that FECH activity is an important determinant of tumor response to DFO treatment.  相似文献   

12.
δ‐Aminolevulinic acid (ALA)‐induced protoporphyrin accumulation is widely used in the treatment of cancer, as photodynamic therapy (PDT). To clarify the mechanisms of ALA uptake by tumor cells, we have examined the ALA‐induced accumulation of protoporphyrin by the treatment of colon cancer DLD‐1 and epithelial cancer HeLa cells with γ‐aminobutyric acid (GABA)‐related compounds. When the cells were treated with GABA, taurine and β‐alanine, the level of protoporphyrin was decreased, suggesting that plasma membrane transporters involved in the transport of neurotransmitters contribute to the uptake of ALA. By transfection with neurotransmitter transporters SLC6A6, SLC6A8 and SLC6A13 cDNA, the ALA‐ and ALA methylester‐dependent accumulation of protoporphyrin markedly increased in HEK293T cells, dependent on an increase in the uptake of ALA. When ALA‐treated cells were exposed to white light, the extent of photodamage increased in SLC6A6‐ and SLC6A13‐expressing cells. Conversely, knockdown of SLC6A6 or SLC6A13 with siRNAs in DLD‐1 and HeLa cells decreased the ALA‐induced accumulation. The expression of SLC6A6 and SLC6A13 was found in some cancer cell lines. Immunohistochemical studies revealed that the presence of these transporters was elevated in colon cancerous cells. These results indicated that neurotransmitter transporters including SLC6A6 and SLC6A13 mediate the uptake of ALA and can play roles in the enhancement of ALA‐induced accumulation of protoporphyrin in cancerous cells.  相似文献   

13.
Photodynamic therapy (PDT) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. Maximizing the accumulation of the photosensitizer protoporphyrin IX (PpIX) within different cell types would be clinically useful. Dermatological PpIX-induced PDT regimes produce good clinical outcomes but this currently only applies when the lesion remains superficial. Also, as an adjuvant therapy for the treatment of primary brain tumors, fluorescence guided resection (FGR) and PDT can be used to highlight and destroy tumor cells unreachable by surgical resection. By employing iron chelators PpIX accumulation can be enhanced. Two iron-chelating agents, 1,2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) and dexrazoxane, were individually combined with the porphyrin precursors aminolevulinic acid (ALA), methyl aminolevulinate (MAL) and hexyl aminolevulinate (HAL). Efficacies of the iron-chelating agents were compared by recording the PpIX fluorescence in human squamous epithelial carcinoma cells (A431) and human glioma cells (U-87 MG) every hour for up to 6 h. Coincubation of ALA/MAL/HAL with CP94 resulted in a greater accumulation of PpIX compared to that produced by coincubation of these congeners with dexrazoxane. Therefore the clinical employment of iron chelation, particularly with CP94 could potentially increase and/or accelerate the accumulation of ALA/MAL/HAL-induced PpIX for PDT or FGR.  相似文献   

14.
Photodynamic therapy (PDT) is a novel technique for local endoscopic treatment of gastrointestinal neoplasia. Current photosensitisers for PDT may cause prolonged skin phototoxicity. 5-Aminolaevulinic acid (ALA), a precursor of the photosensitiser protoporphyrin IX (PpIX), is more acceptable because of its short half-life and preferential accumulation in mucosa and mucosal tumour. We have treated 12 patients, median age 73 years (range 55-88) with oesophageal adenocarcinoma arising from Barrett's metaplasia (two carcinomas-in-situ, grade 0; 10 carcinomas, grade 1-11A based on endoluminal ultrasound in two and CT scanning in 10 patients). ALA (60 and 75 mg/kg body weight) was given orally in two or five equally divided doses. The PpIX distribution in stomach, normal oesophagus, Barrett's mucosa and carcinoma was measured by quantitative fluorescence photometry. PDT was performed using laser light (630 nm) delivered via a cylindrical diffuser 4-6 h after the first dose of ALA. The patients received one to four sessions of PDT. PpIX accumulation in the mucosa was two to three times that in the lamina propria. The differential distribution between carcinomatous and normal oesophageal mucosa was less marked (carcinoma:normal mucosa ratio = 1.4). Higher doses of ALA increased PpIX accumulation in all tissues but did not increase the differential PpIX distribution between tumour and normal oesophageal mucosa. After PDT using ALA (ALA/PDT), all mucosa showed superficial white necrotic changes and the histology confirmed fibrinoid necrosis. One patient with carcinoma-in-situ had the tumour eradicated after one treatment with no recurrence at 28 months. Another patient with a small T1 tumour required four ALA/PDT treatments, and died of other disease after 36 months. There was no evidence of recurrence. The tumour bulk in the other carcinomas was not significantly reduced. ALA/PDT has a potential for the eradication of small tumours but careful patient selection with endoluminal ultrasound is needed when using ALA/PDT to treat oesophageal cancer.  相似文献   

15.
《Electrophoresis》2017,38(9-10):1318-1324
We developed the photo‐crosslinkable hydrogel microfluidic co‐culture device to study photothermal therapy and cancer cell migration. To culture MCF7 human breast carcinoma cells and metastatic U87MG human glioblastoma in the microfluidic device, we used 10 w/v% gelatin methacrylate (GelMA) hydrogels as a semi‐permeable physical barrier. We demonstrated the effect of gold nanorod on photothermal therapy of cancer cells in the microfluidic co‐culture device. Interestingly, we observed that metastatic U87MG human glioblastoma largely migrated toward vascular endothelial growth factor (VEGF)‐treated GelMA hydrogel‐embedding microchannels. The main advantage of this hydrogel microfluidic co‐culture device is to simultaneously analyze the physiological migration behaviors of two cancer cells with different physiochemical motilities and study gold nanorod‐mediated photothermal therapy effect. Therefore, this hydrogel microfluidic co‐culture device could be a potentially powerful tool for photothermal therapy and cancer cell migration applications.  相似文献   

16.
Light fractionation does not enhance the response to photodynamic therapy (PDT) after topical methyl-aminolevulinate (MAL) application, whereas it is after topical 5-aminolevulinic acid (ALA). The differences in biophysical and biochemical characteristics between MAL and ALA may result in differences in localisation that cause the differences in response to PDT. We therefore investigated the spatial distribution of protoporphyrin IX (PpIX) fluorescence in normal mouse skin using fluorescence microscopy and correlated that with the PDT response histologically observed at 2.5, 24 and 48h after PDT. As expected high fluorescence intensities were observed in the epidermis and pilosebaceous units and no fluorescence in the cutaneous musculature after both MAL and ALA application. The dermis showed localised fluorescence that corresponds to the cytoplasma of dermal cells like fibroblast and mast cells. Spectral analysis showed a typical PpIX fluorescence spectrum confirming that it is PpIX fluorescence. There was no clear difference in the depth and spatial distribution of PpIX fluorescence between the two precursors in these normal mouse skin samples. This result combined with the conclusion of Moan et al. that ALA but not MAL is systemically distributed after topical application on mouse skin [Moan et al., Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters, Int. J. Cancer 103 (2003) 132-135] suggests that endothelial cells are involved in increased response of tissues to ALA-PDT using light fractionation. Histological analysis 2.5h after PDT showed more edema formation after ALA-PDT compared to MAL-PDT that was not accompanied by a difference in the inflammatory response. This suggests that endothelial cells respond differently to ALA and MAL-PDT. Further investigation is needed to determine the role of endothelial cells in ALA-PDT and the underlying mechanism behind the increased effectiveness of light fractionation using a dark interval of 2h found after ALA but not after MAL-PDT.  相似文献   

17.
Cercosporin is a naturally occurring perylenequinone. Although other perylenequinones have been extensively studied as photosensitizers in photodynamic therapy of cancer (PDT), cercosporin has been studied in this light only within the remits of phytopathology. Herein, we investigated the photocytotoxicity of cercosporin against two glioblastoma multiforme (T98G and U87) and one breast adenocarcinoma (MCF7) human cell lines. Cercosporin was found to be a potent singlet oxygen producer upon 532 nm excitation, while its cell loading was similar for MCF7 and U87, but approximately threefold higher for T98G cells. The subcellular localization of cercosporin was in all cases in both mitochondria and the endoplasmic reticulum. Light irradiation of cercosporin‐incubated cells around 450 nm showed that T98G cells were more susceptible to cercosporin PDT, mainly due to their higher cercosporin uptake. Metabolic studies before and 1 h following cercosporin PDT showed that cercosporin PDT instigated a bioenergetic collapse in both the respiratory and glycolytic activities of all cell lines. In the dark, cercosporin exhibited a synergistic cytotoxicity with copper only in the most respiratory cell lines (MCF7 and T98G). Cercosporin is a potent photosensitizer, but with a short activation wavelength, mostly suitable for superficial PDT treatments, especially when it is necessary to avoid perforations.  相似文献   

18.
Photodynamic therapy (PDT), in which 5‐ALA (a precursor for protoporphyrin IX, PpIX) is administered prior to exposure to light, is a nonscarring treatment for skin cancers. However, for deep tumors, ALA‐PDT is not always effective due to inadequate production of PpIX. We previously developed and reported a combination approach in which the active form of vitamin D3 (calcitriol) is given systemically prior to PDT to improve PpIX accumulation and to enhance PDT‐induced tumor cell death; calcitriol, however, poses a risk of hypercalcemia. Here, we tested a possible strategy to circumvent the problem of hypercalcemia by substituting natural dietary vitamin D3 (cholecalciferol; D3) for calcitriol. Oral D3 supplementation (10 days of a 10‐fold elevated D3 diet) enhanced PpIX levels 3‐ to 4‐fold, and PDT‐mediated cell death 20‐fold, in subcutaneous A431 tumors. PpIX levels and cell viability in normal tissues were not affected. Hydroxylated metabolic forms of D3 were only modestly elevated in serum, indicating minimal hypercalcemic risk. These results show that brief oral administration of cholecalciferol can serve as a safe neoadjuvant to ALA‐PDT. We suggest a clinical study, using oral vitamin D3 prior to PDT, should be considered to evaluate this promising new approach to treating human skin cancer.  相似文献   

19.
20.
Better noninvasive techniques are needed to monitor protoporphyrin IX (PpIX) levels before and during photodynamic therapy (PDT) of squamous cell carcinoma (SCC) of the skin. Our aim was to evaluate (1) multispectral fluorescent imaging of ultraviolet light (UV)‐induced cancer and precancer in a mouse model of SCC and (2) multispectral imaging and probe‐based fluorescence detection as a tool to study vitamin D (VD) effects on aminolevulinic acid (ALA)‐induced PpIX synthesis. Dorsal skin of hairless mice was imaged weekly during a 24‐week UV carcinogenesis protocol. Hot spots of PpIX fluorescence were detectable by multispectral imaging beginning at 14 weeks of UV exposure. Many hot spots disappeared after cessation of UV at week 20, but others persisted or became visible after week 20, and corresponded to tumors that eventually became visible by eye. In SCC‐bearing mice pretreated with topical VD before ALA application, our optical techniques confirmed that VD preconditioning induces a tumor‐selective increase in PpIX levels. Fluorescence‐based optical imaging of PpIX is a promising tool for detecting early SCC lesions of the skin. Pretreatment with VD can increase the ability to detect early tumors, providing a potential new way to improve efficacy of ALA‐PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号