共查询到20条相似文献,搜索用时 0 毫秒
1.
《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(1):298-307
The self‐assembly and characterization of water‐soluble calix[4]arene‐based molecular capsules ( 1?2 ) is reported. The assemblies are the result of ionic interactions between negatively charged calix[4]arenes 1 a and 1 b , functionalized at the upper rim with amino acid moieties, and a positively charged tetraamidiniumcalix[4]arene 2 . The formation of the molecular capsules is studied by 1H NMR spectroscopy, ESI mass spectrometry (ESI‐MS), and isothermal titration calorimetry (ITC). A molecular docking protocol was used to identify potential guest molecules for the self‐assembled capsule 1 a?2 . Experimental guest encapsulation studies indicate that capsule 1 a?2 is an effective host for both charged (N‐methylquinuclidinium cation) and neutral molecules (6‐amino‐2‐methylquinoline) in water. 相似文献
2.
3.
Jian‐Bo Qu Chun‐Feng Xie Mei Ji Yan‐Qiu Shi Hong‐Xiang Lou 《Helvetica chimica acta》2007,90(11):2109-2115
Four new glycosides, the bibenzyl glycoside α,β‐dihydrostilbene‐2,4′,5‐triol 2,5‐di‐(β‐D ‐glucopyranoside) ( 1 ), the shikimic acid glycoside shikimic acid 4‐(β‐D ‐xylopyranoside) ( 2 ), and two phenylethanoid glycosides 2‐(3,4‐dihydroxyphenyl)ethyl O‐α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐allopyranoside ( 3 ) and 2‐(3,4‐dihydroxyphenyl)ethyl O‐β‐D ‐xylopyranosyl‐(1→6)‐β‐D ‐allopyranoside ( 4 ), together with three known aromatic glycosides were isolated from the H2O‐soluble fraction of the EtOH extract of the liverwort Marchantia polymorpha. Their structures were elucidated on the basis of chemical and spectroscopic evidences. 相似文献
4.
Metallocenes are organometallic compounds with reversible redox profiles and tunable oxidation and reduction potentials, depending on the metal and substituents at the cyclopentadienyl rings. Metallocenes have been introduced in macromolecules to combine the redox‐activity with polymer properties. There are many examples of such hydrophobic polymer materials, but much fewer water‐soluble examples are found scattered across the polymer literature. However, in terms of drug delivery and other biological applications, water solubility is essential. For this very reason, all the synthetic routes to water‐soluble metallocene containing polymers are collected and discussed here. The focus is on neutral ferrocene‐ and ruthenocene‐containing and charged cobaltocenium‐containing macromolecules (i.e., symmetrical sandwich complexes). The synthetic protocols, self‐assembly behavior, and other benefits of the obtained materials are discussed.
5.
6.
Qingling Xu Chunxian Wu Chunlei Zhu Xinrui Duan Prof. Libing Liu Dr. Yuchun Han Prof. Yilin Wang Prof. Shu Wang 《化学:亚洲杂志》2010,5(12):2524-2529
Rapid and sensitive methods to detect proteins and protein denaturation have become increasingly needful in the field of proteomics, medical diagnostics, and biology. In this paper, we have reported the synthesis of a new cationic water‐soluble conjugated polymer that contains fluorene and diene moieties in the backbone ( PFDE ) for protein identification by sensing an array of PFDE solutions in different ionic strengths using the linear discriminant analysis technique (LDA). The PFDE can form complexes with proteins by electrostatic and/or hydrophobic interactions and exhibits different fluorescence response. Three main factors contribute to the fluorescence response of PFDE , namely, the net charge density on the protein surface, the hydrophobic nature of the protein, and the metalloprotein characteristics. The denaturation of proteins can also be detected using PFDE as a fluorescent probe. The interactions between PFDE and proteins were also studied by dynamic light scattering (DLS) and isothermal titration microcalorimetry (ITC) techniques. In contrast to other methods based on conjugated polymers, the synthesis of a series of quencher or dye‐labeled acceptors or protein substrates has been avoided in our method, which significantly reduces the cost and the synthetic complexity. Our method provides promising applications on protein identification and denaturation detection in a simple, fast, and label‐free manner based on non‐specific interaction‐induced perturbation of PFDE fluorescence response. 相似文献
7.
Vadym V. Levterov Yaroslav Panasyuk Valentyna O. Pivnytska Pavel K. Mykhailiuk 《Angewandte Chemie (International ed. in English)》2020,59(18):7161-7167
A new generation of saturated benzene mimetics, 2‐oxabicyclo[2.1.1]hexanes, was developed. These compounds were designed as analogues of bicyclo[1.1.1]pentane with an improved water solubility. Crystallographic analysis of 2‐oxabicyclo[2.1.1]hexanes revealed that they occupy a novel chemical space, but, at the same time, resemble the motif of meta‐disubstituted benzenes. 相似文献
8.
9.
10.
11.
12.
Kamel Chougrani Jrome Deschamps Sylvain Dutremez Arie van der Lee Thierry Barisien Laurent Legrand Michel Schott Jean‐Sbastien Filhol Bruno Boury 《Macromolecular rapid communications》2008,29(7):580-586
Synthesis of a water‐soluble polydiacetylene has been achieved by topochemical polymerization in the solid state of the bis(N‐methylimidazolium)diacetylene monomer. Structural characterization for the monomer by X‐ray diffraction and NMR spectroscopy supports a photopolymerization initiated at the surface. Characterization of the polymer (NMR, UV and Raman spectroscopy, and dynamic light scattering) is given along with a molecular modelling interpretation of the polymerization in the solid state.
13.
14.
Christophe Jung Dr. Nadia Ruthardt Dr. Robert Lewis Jens Michaelis Prof. Dr. Beate Sodeik Prof. Dr. Fabian Nolde Dr. Kalina Peneva Dr. Klaus Müllen Prof. Dr. Christoph Bräuchle Prof. Dr. 《Chemphyschem》2009,10(1):180-190
The photophysical properties of three new water‐soluble terrylenediimide (WS‐TDI) derivatives are investigated and their utilization in biological experiments is demonstrated. Each of these dyes can be excited in the far red region of the visible spectrum, making them good candidates for in‐vivo studies. Single‐molecule techniques characterize their photophysics that is, the number of emitted photons, blinking characteristics and survival times until photobleaching takes place. All three dyes exhibit bright fluorescence, as well as an extremely high resistance against photodegradation compared to other well‐known fluorophores. Due to their different characteristics the three new WS‐TDI derivatives are suitable for specialized biological applications. WS‐TDI dodecyl forms non‐fluorescent aggregates in water which can be disrupted in a hydrophobic environment leading to a monomeric fluorescent form. Due to its high lipophilicity WS‐TDI dodecyl anchors efficiently in lipid bilayers with its alkyl chain and hence can be ideally used to image membranes and membrane‐containing compartments in living cells. In contrast, the positively charged WS‐TDI pyridoxy is a new type of chromophore in the WS‐TDI family. It is fully solubilized in water forming fluorescent monomers and is successfully used to label the envelope of herpes simplex viruses. Finally, it is shown that a WS‐TDI derivative functionalized with N‐hydroxysuccinimide ester moiety (WS‐TDI/NHS ester) provides a versatile reactive dye molecule for the specific labelling of amino groups in biomolecules such as DNA. 相似文献
15.
Robert Chapman Prof. Gregory G. Warr Prof. Sébastien Perrier Prof. Dr. Katrina A. Jolliffe 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(6):1955-1961
Water‐soluble organic nanotubes were prepared by convergently conjugating polymers of hydroxyethyl acrylate (HEA) and acrylic acid (AA) to self‐assembling cyclic octapeptides of alternating D and L chirality. The structure of the self‐assembled tubes was characterised in a number of polar solvents, and notably water, by using light scattering, TEM and small angle neutron scattering (SANS) techniques. In addition, the self‐assembly into tubes could be controlled by exploiting the pH responsiveness of acrylic acid polymers. 相似文献
16.
Water‐Mediated Recognition of Simple Alkyl Chains by Heart‐Type Fatty‐Acid‐Binding Protein 下载免费PDF全文
Dr. Shigeru Matsuoka Dr. Shigeru Sugiyama Dr. Daisuke Matsuoka Mika Hirose Dr. Sébastien Lethu Hikaru Ano Dr. Toshiaki Hara Dr. Osamu Ichihara Dr. S. Roy Kimura Dr. Satoshi Murakami Hanako Ishida Dr. Eiichi Mizohata Dr. Tsuyoshi Inoue Dr. Michio Murata 《Angewandte Chemie (International ed. in English)》2015,54(5):1508-1511
Long‐chain fatty acids (FAs) with low water solubility require fatty‐acid‐binding proteins (FABPs) to transport them from cytoplasm to the mitochondria for energy production. However, the precise mechanism by which these proteins recognize the various lengths of simple alkyl chains of FAs with similar high affinity remains unknown. To address this question, we employed a newly developed calorimetric method for comprehensively evaluating the affinity of FAs, sub‐Angstrom X‐ray crystallography to accurately determine their 3D structure, and energy calculations of the coexisting water molecules using the computer program WaterMap. Our results clearly showed that the heart‐type FABP (FABP3) preferentially incorporates a U‐shaped FA of C10–C18 using a lipid‐compatible water cluster, and excludes longer FAs using a chain‐length‐limiting water cluster. These mechanisms could help us gain a general understanding of how proteins recognize diverse lipids with different chain lengths. 相似文献
17.
18.
Huyen Thanh Vo Young Jin Kim Eun Hee Jeon Dr. Chang Soo Kim Prof. Hoon Sik Kim Dr. Hyunjoo Lee 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(29):9019-9023
A new type of water‐soluble ionic cellulose was obtained by means of the dissolution of cellulose in dimethylimidazolium methylphosphite at elevated temperatures over 120 °C. FTIR spectroscopy, 1H and 13C NMR spectroscopy, and elemental analysis results revealed that the repeating unit of the water‐soluble cellulose consists of a dialkylimidazolium cation and a phosphite anion bonded to cellulose. The degree of phosphorylation on the cellulose chain was between 0.4 and 1.3 depending on the reaction temperature and time. With an increasing degree of phosphorylation, water solubility was increased. Scanning electron microscopy and X‐ray diffraction analyses revealed that the cellulose crystalline phase in the parent crystalline cellulose changed to an amorphous phase upon transformation into ionic cellulose. Thermogravimetric analysis showed the prepared phosphorylated cellulose was stable over 250 °C and a substantial amount of residue remained at 500 °C. 相似文献
19.
Enzyme assays are receiving more and more research and application interest because of the rapidly increasing demands of clinical diagnosis, environmental analysis, drug discovery, and molecular biology. Water‐soluble light‐harvesting conjugated polymers (CPs) coordinate the action of a large number of absorbing units to afford an amplified fluorescence signal, which makes them useful as optical platforms in highly sensitive chemical and biological sensors. This Feature Article highlights recent developments of water‐soluble CPs for fluorescent assays of enzymes. Different signal transduction mechanisms, such as electron transfer, fluorescence resonance energy transfer (FRET), and aggregation or conformation changes of CPs, are employed in these assays according to the dissimilar nature of enzymes. Potential challenges and future research directions in these approaches based on CPs are also discussed.
20.
Lixia Ren Lihong He Tongchen Sun Xia Dong Yongming Chen Jin Huang Chun Wang 《Macromolecular bioscience》2009,9(9):902-910
Novel temperature and pH dual‐responsive hydrogels were constructed by inclusion of poly(PEGMA)‐co‐poly(DMA) with α‐cyclodextrin in aqueous solution. The temperature‐ or pH‐induced sol/gel transition in the hydrogels was completely reversible. Studies on structure/property relationships show that chain uniformity, graft density and copolymer concentration affect the hydrogel behavior. A dual‐responsive mechanism is proposed. The in vitro release of a model drug from this hydrogel was studied. It was found that the release kinetics were greatly accelerated at higher temperature and at acidic pH conditions, indicating potential applications in controlled drug delivery.