首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under normal conditions, the cornea absorbs the majority of UVB (ultraviolet B, 280-320 nm) rays, which is very important for the protection of the inner eye against their damaging effect. Our previous studies have shown that repeated irradiation of the rabbit cornea with UVB rays for 5 days (daily dose of 1.01 J cm(- 2)) caused photokeratitis accompanied by swelling (hydration) of the corneal stroma, thinning of the corneal epithelium and decrease in antioxidants. The purpose of this study was to examine the light absorption properties of such damaged rabbit cornea. Results of both spectrophotometry of the whole corneal buttons and corneal tissue dissolved in sodium hydroxide show that because of above mentioned disturbances, UVB-irradiated cornea absorbs more light throughout the whole measurable UV-VIS spectral range than the normal cornea. Increased corneal thickness (result of hydration), changes of corneal transparency (the cornea becomes grayish) and some increase in protein content all contribute to the increased light absorption of UVB irradiated corneas. We suggest that the UVB-irradiated cornea, although damaged and nearly without antioxidants, might actually through its higher UV absorbance protect the inner eye against further damage from UVB rays.  相似文献   

2.
Min D  Lyons JG  Jia J  Lo L  McLennan SV 《Electrophoresis》2006,27(2):357-364
Measurement of matrix metalloproteinases (MMPs) and their specific tissue inhibitors of metalloproteinases (TIMPs) by the techniques of zymography and reverse zymography provide useful information regarding the status of matrix accumulation or breakdown. This report describes the use of 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF), a fluorescent compound which can be used to label gelatin as a substrate for detection of the gelatin degrading MMP-2 and -9 by zymography. In addition, a modification of the zymographic technique by addition of excess MMPs enables the use of the MDPF-labeled gelatin substrate for the identification and quantification of TIMPs by reverse zymography. Both systems are real-time sensitive reliable quantification techniques, easily used for measurement of these MMPs and TIMPs in clinical, biological, and tissue culture samples.  相似文献   

3.
Irradiation of the cornea with UVB rays leads to its oxidative damage, swelling and increased light absorption. We investigated changes in the corneal optics (evaluated by changes of corneal hydration and light absorption) and microscopical disturbances of corneas irradiated with UVB rays as influenced by eye drops containing actinoquinol with hyaluronic acid. Rabbit corneas were irradiated with a daily dose of 0.5 or 1.01 J cm−2 of UVB rays (312 nm) for 4 days. During irradiation, the eye drops were applied on the right eye and buffered saline (or hyaluronic acid) on the left eye. On day 5 the rabbits were sacrificed and the corneas examined spectrophotometrically for light absorption. The corneal thickness (hydration) was measured using a pachymeter. Corneas of some other rabbits were examined immunohistochemically. After buffered saline treatment UVB rays evoked changes in the corneal optics and induced oxidative damage of the corneas. After actinoquinol-hyaluronic acid application, these changes were diminished. Hyaluronic acid alone was less effective. In conclusion, actinoquinol-hyaluronic acid eye drops decreased changes in corneal optics and suppressed oxidative damage in the UVB-irradiated cornea. However, the effective corneal protection by these eye drops was limited to the lower UVB dose.  相似文献   

4.
Angelica archangelia (AA), a traditional herb, has attracted attention as an agent with potential for use in the prevention of chronic skin diseases. This study examined the photoprotective effects of AA on the inhibition of matrix metalloproteinases (MMPs) and collagen degradation in UVB‐irradiated normal human dermal fibroblasts. Our results showed that AA markedly blocked collagen degradation by restraining the production of MMPs in UVB‐exposed fibroblasts. We also investigated the underlying mechanism behind the effects of AA. AA attenuated UVB‐triggered interleukin‐6 (IL‐6) and promoted the expression of transforming growth factor β1. Application of AA extract (10, 100 μg mL?1) significantly diminished UVB‐induced extracellular signal‐regulated kinase and Jun‐N‐terminal kinase phosphorylation, which consequently reduced phosphorylated c‐Fos and c‐Jun. Our results indicated that AA inhibited the UVB‐induced expression of MMPs by inhibiting mitogen‐activated protein kinase signaling pathways and activator protein‐1 activation. Our results suggest that AA is a promising botanical agent for use against skin photoaging.  相似文献   

5.
Exposure to UV radiation up-regulates the synthesis of matrix metalloproteinases (MMPs), a group of matrix-degrading enzymes. MMPs are regarded as promising therapeutic targets and the development of effective inhibitors is an important research focus. The plant Pothomorphe umbellata has been shown to exert a potent antioxidant activity on the skin and to delay the onset and reduce the incidence of UVB-induced chronic skin damage. The aim of the present study was to determine the effect of P. umbellata ethanolic root extract on MMP-2 and MMP-9. The in vitro inhibition of MMP-2 and MMP-9 was measured by gelatin zymography in the presence of different concentrations of P. umbellata extract, as well as in the presence of its isolated active principle 4-nerolidylcatechol (4-NC). The inhibitory effect of the P. umbellata extract was stronger than that of 4-NC. Gelatin zymography and histological analysis revealed that P. umbellata was able to inhibit constitutive MMP-9 activity in vivo in mice sacrificed 2 h after UVB irradiation. The intensity of the MMP-2 band was unchanged. Our data contribute to the elucidation of the mechanism of prevention of photoaging by P. umbellata and may provide a rational basis for the use of this plant in prophylaxis against and treatment of skin cancer.  相似文献   

6.
Ultraviolet (UV)-mediated DNA damage in various tissues has been well documented. However, research on the damaging effect of UV irradiation on the DNA of corneal epithelium is scarce, even though this is of interest because the cornea is directly exposed to damaging solar (UV) radiation. In this study, we developed a corneal epithelium Comet assay model to assess the background DNA damage (as strand breaks) in cells retrieved from different layers of the porcine corneal epithelium, and to investigate the effect of UV irradiation on DNA damage in corneal epithelial cells. Results show that the background DNA strand breaks decreased significantly (P < 0.001) toward deeper layers of the epithelium. Exposure to the same intensity (0.216 J/cm2) of UVA, UVB and UVC caused a significant (P < 0.001) increase in DNA strand breaks of deeper-layer cells: mean +/- SD %DNA scores (10 gels per treatment, with 100 irradiated cells scored per gel) were 10.2% +/- 1.4% for UVA, 27.4% +/- 4.6% for UVB, and 14.7% +/- 1.8% for UVC compared with 4.2% +/- 0.5% for controls (ambient room light). This study has shown for the first time that the Comet assay for DNA strand breaks can be used successfully with corneal epithelial cells. This report will support future studies investigating environmental influences on corneal health and the assessment of possible protective strategies, and in applying DNA lesion-specific versions of the Comet assay in this corneal epithelial cell model.  相似文献   

7.
Abstract— The right eyes of 40 rats were exposed to a signal erythemogenic dose fo ultraviolet B irradiation (UVB) at 297nm. The irradiation was directed perpenddicualr to the center of the cornea. The left eyes served as controls. The animals were randomly assigned into 10 groups. The labelling index (LI) after pluse labeling the tritiated thymidine and the mitotic rate (MR) after Colcemid administration were registered in the corneal epithelium at predetermined intervals up to 96 h after the irradiation. A mathematical method was used to corealted corresponding corneal areas from the different animals. In the central the LI was considerably reduced up to 36h after the irradiation. The LI increased toward the peripheral cornea and reached normal values at the limbal area. The MR was also reduced up to 36h. However, this reduction was over the entire epithelium. The block in cell proliferation was followed by increased proliferation.  相似文献   

8.
A preliminary study was undertaken to establish whether low-dose UV irradiation (UVB) affects calcium cell signaling in rabbit lens epithelia. In a suspension of lens epithelial cells (line NN1003A), changes in intracellular Ca2+ were measured by Fura-2 fluorescence in response to exogenously added ATP. The cellular response to ATP, referred to as the calcium signal, is characterized by a brief increase and subsequent decrease in cytosolic Ca2+ levels. Ultraviolet B irradiation (1.8-9 mJ/cm2) was found to reduce the magnitude of the Ca2+ signal in a dose-dependent manner. A 5 min UVB exposure (9 mJ/cm2) completely altered the biphasic nature of the calcium signal, causing only an immediate and steady rise in cytosol Ca2+ levels. Lower fluences of UVB irradiation (2 min exposure times or 3.6 mJ/cm2) induced a 50% reduction in the calcium signal. When irradiated cells were returned to culture for 3 h after irradiation, calcium signals induced by ATP were normal. In view of the photooxidative nature of UVB irradiation, the oxidative state of cells was assessed by measuring glutathione (GSH) levels. Ultraviolet B irradiation caused a rapid 20% decline in GSH levels that returned to near-control values after a 3 h postirradiation incubation. The results of this study indicate that fluences lower than previously found to be cataractogenic can perturb calcium cell signaling in cultured lens epithelial cells.  相似文献   

9.
Solar UVB radiation evokes photokeratitis, accompanied by increased corneal hydration and changes in corneal transparency, resulting in increased light absorption. Corneal optical properties are disturbed and visual acuity decreased. The aim of this study was to investigate the reversibility of these UVB‐induced changes. Rabbit corneas were irradiated with UVB doses of 0.5 J cm?2 or 1.01 J cm?2 during 4 days. Some rabbits were sacrificed after the last irradiation and some 2 months later. Corneas were investigated spectrophotometrically for light absorption, and corneal hydration was evaluated by central corneal thickness with an ultrasonic pachymeter. Corneal impression cytologies were examined immunohistochemically for proinflammatory cytokines and malondialdehyde. The increased corneal light absorption, hydration and the staining of immunohistochemical markers found in corneas after irradiation returned to normal values during 2 months in corneas irradiated with the lower UVB dose. In contrast, in corneas irradiated with the higher UVB dose, a moderate but statistically significant increase in corneal light absorption, hydration and positive immunohistochemical stainings remained as residual changes. This was in contrast to normal corneas, where the staining of proinflammatory cytokines as well as malondialdehyde was negative. In conclusion, the reversibility of UVB‐induced disturbances was dependent on UVB dose.  相似文献   

10.
Sunlight exposure of the eye leads to pathologies including photokeratitis, cortical cataracts, pterygium, actinic conjunctivitis and age‐related macular degeneration. It is well established that exposure to ultraviolet (UV) radiations leads to DNA damage, mainly cyclobutane pyrimidine dimers (CPDs). CPD formation is the principal factor involved in skin cancer. However, the exact mechanism by which sunlight induces ocular pathologies is not well understood. To shed light on this issue, we quantified the CPD formation onto DNA of rabbit ocular cells following UVB exposure. We found that CPDs were induced only in the structures of the ocular anterior chamber (cornea, iris and lens) and were more concentrated in the corneal epithelium. Residual UVB that pass through the cornea are completely absorbed by the anterior layers of the iris. CPDs were also detected in the central portion of the lens that is not protected by the iris (pupil). By determining the UV‐induced DNA damage formation in eyes, we showed that anterior ocular structures are a reliable physical barrier that protects the subjacent structures from the toxic effects of UV. Although the corneal epithelium is the structure where most of the CPDs were detected, no cancer is related to solar exposure.  相似文献   

11.
The transmembrane glycoprotein CD44 is currently thought to be the main cell surface receptor for the glycosaminoglycan hyaluronate. We previously showed that (1) CD44 regulate keratinocyte proliferation; (2) topical retinoids dramatically increase the expression of CD44, hyaluronate and hyaluronate synthase (HAS)s in mouse epidermis; (3) topical retinaldehyde restores the epidermal thickness and CD44 expression which are correlated with clinical improvement in lichen sclerosus et atrophicus lesions; and (4) retinaldehyde-induced proliferative response of keratinocytes is a CD44-dependent phenomenon and requires the presence of HB-EGF, erbB1 and matrix metalloproteinases. In this study, we analyzed the effect of UV irradiation on the levels of epidermal hyaluronate and CD44 in mice, as well as its potential prevention by topical retinoids. UVA (10 J/cm(2)) or UVB (1 J/cm(2)) irradiation significantly decreased the expression of CD44 and hyaluronate in the epidermis of hairless mice after 2 h. Expression of both epidermal CD44 and hyaluronate was reconstituted within 24 h. Topical application of retinaldehyde for 3 days prior to UVA or UVB irradiation prevented the decrease of CD44 and hyaluronate expression. Topical retinol and retinoic acid also increased the basal levels of epidermal CD44 and hyaluronate, although their preventive effect on UV-induced decrease of these molecules was less pronounced as compared to topical retinaldehyde. These data confirm the relationships between retinoid and CD44 pathways, although the primary target(s) of UV leading to CD44 and hyaluronate degradation remain to be elucidated.  相似文献   

12.
Matrix metalloproteinases (MMPs), zinc-dependent endopeptidases, are implicated in tumor progression. We describe herein the development of a resin-immobilized, broad-spectrum synthetic MMP inhibitor for selective binding of the active forms of MMPs from different experimental samples. We confirmed the activity-based binding of MMPs to the inhibitor-tethered resin with purified human recombinant MMP-2, -9, and -14, samples of cultured cells, and tissue extracts. Our results show that only the free active MMPs, and not the zymogens or MMP/TIMP (enzyme-protein inhibitor) complexes, bound specifically to the resin. In our comparison of benign and carcinoma tissue extracts, we detected active MMP-2 and MMP-14 forms only in the cancerous tissue samples, indicating that a pool of the tumor MMPs is free of endogenous inhibitors (TIMPs), and is thus likely to contribute to proteolytic events that precipitate tumor metastasis.  相似文献   

13.
Dysregulation of matrix metalloproteinases (MMPs) activity is known in many pathological conditions with which most of the conditions are related to elevate MMPs activities. Ficus deltoidea (FD) is a plant known for its therapeutic properties. In order to evaluate the therapeutic potential of FD leaf extract, we study the enzymatic inhibition properties of FD leaf extract and its major bioactive compounds (vitexin and isovitexin) on a panel of MMPs (MMP-2, MMP-8 and MMP-9) using experimental and computational approaches. FD leaf extract and its major bioactive compounds showed pronounced inhibition activity towards the MMPs tested. Computational docking analysis revealed that vitexin and isovitexin bind to the active site of the three tested MMPs. We also evaluated the cytotoxicity and cell migration inhibition activity of FD leaf extract in the endothelial EA.hy 926 cell line. Conclusively, this study provided additional information on the potential of FD leaf extract for therapeutical application.  相似文献   

14.
Sensitization on skin exposed to acute low-dose UVB irradiation separates normal humans into two phenotypically distinct groups: One group, following sensitization on UVB-irradiated skin, develops contact sensitivity, designated UVB resistant (UVB-R) and the second group, following sensitization on UVB-irradiated skin, fails to develop contact sensitivity, designated UVB susceptible (UVB-S). To investigate whether UVB susceptibility in humans is related to antigen-presenting activity in the skin we studied the effect of UVB irradiation on the number and function of the epidermal antigen-presenting cells in volunteers identified as UVB-R and UVB-S. Single cell suspensions of epidermal cells from control skin and skin exposed to 3 minimal erythema doses (MED) of UVB 3 days previously were stained for Langerhans cells (CD1a+HLA-DR+) and epidermal macrophages (CD1a-HLA-DR+). The UVB exposure of the skin significantly decreased the percentage of Langerhans cells (UVB-R: n = 7, P < 0.02, UVB-S: n = 6, P < 0.03) and increased the percentage of epidermal macrophages (UVB-R: n = 7, P < 0.03, UVB-S: n = 6, P < 0.03) however to the same degree in both the UVBR and the UVB-S group. To study the effect on Langerhans cell alloreactivity, epidermal cells were harvested immediately after UVB irradiation. However, in both UVB-R and UVB-S subjects the Langerhans cell alloreactivity was blocked to the same degree immediately after UVB irradiation compared to nonirradiated epidermal cells. To determine the effect of UVB irradiation on epidermal macrophages, epidermal cells were harvested 3 days after UVB irradiation. Irradiated epidermal cells from both UVB-R and UVB-S subjects demonstrated a strong antigen-presenting capacity compared to epidermal cells from control skin leading to activation of T cells that mainly secrete interferon (1FN)-γ and not interleukin (IL)-4. In conclusion we found that UVB susceptibility was not correlated with the number of Langerhans cells or epidermal macrophages in the skin at the same time of sensitization. Neither was it correlated with the capacity of Langerhans cells nor UVB-induced epidermal macrophages to activate T cells in vitro.  相似文献   

15.
Abstract— Ultraviolet B irradiation has been believed to decrease or impair the activity of reactive oxygen species (ROS) scavenging enzymes such as superoxide dismutase (SOD) in the skin. It has been recently reported that two isozymes of SOD, namely copper-zinc SOD (Cu-Zn SOD) and manganese SOD (Mn SOD), exist in mammalian cells and that the two enzymes play different roles in living systems. The aim of this study was to investigate changes in SOD activities and protein levels in cultured human keratinocytes after acute UVB irradiation. In addition, the protein levels of Cu-Zn SOD and Mn SOD were quantified separately. A single exposure to UVB irradiation produced an increase in SOD activity and protein level that peaked immediately after UVB irradiation, after which a decline was observed, with subsequent recovery to baseline levels 24 h after irradiation. In individual assays of Mn SOD and Cu-Zn SOD, the amount of Mn SOD protein decreased and then gradually recovered 24 h after irradiation. In contrast, the amount of Cu-Zn SOD protein increased immediately after UVB irradiation, and then gradually declined. To evaluate the mechanisms of these changes, we examined the effects of the cytokines, interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α), which can be secreted from keratinocytes after UVB irradiation, on the SOD activity and protein levels in keratinocytes. Interleukin-la and TNF-α enhanced both the SOD activity and protein level of Mn SOD, while these cytokines had no effect on Cu-Zn SOD protein levels in cultured human keratinocytes after incubation for 24 h. Furthermore, when neutralizing antibodies against IL-1α and TNF-α were added separately or together to the culture medium before UVB irradiation, the recovery of total SOD activity and Mn SOD protein level were markedly inhibited 24 h after irradiation. Our results suggest that significant increases in SOD activity and protein level occur as a cutaneous antioxidant defense mechanism that protects against the cytotoxicity as a result of UVB irradiation, and that this increase in SOD is attributed to Cu-Zn SOD. The Cu-Zn SOD and Mn SOD protein levels changed in a different manner after UVB irradiation. The former may participate in an early phase and the latter in a late phase defense mechanism directed against oxidant cytotoxicity through UVB irradiation. In addition, the recovery of Mn SOD to baseline levels 24 h after UVB irradiation seems to be mediated through cytokines such as IL-1α and TNF-α, which are secreted from keratinocytes.  相似文献   

16.
Matrix metalloproteinases (MMPs) are a pivotal family of zinc enzymes responsible for degradation of the extracellular matrix (ECM) components including basement membrane collagen, interstitial collagen, fibronectin, and various proteoglycans, during normal remodeling and repair processes. The potent proteolytic activities of MMPs is mainly regulated by the balance with specific tissue inhibitors of Matrix metalloproteinases (TIMP). Excessive or inappropriate expression of MMP may contribute to the pathogenesis of tissue destructive processes in a wide variety of diseases including lung diseases. Although the precise mechanisms are still unknown, the contribution of individual MMPs are worth investigating in seeking the pathogenesis of various lung diseases such as lung cancer, bronchial asthma, chronic obstructive pulmonary disease, acute lung injury, pulmonary hypertension and interstitial lung diseases. In particular, the close association of each lung disease with the destructive effects of gelatinase A and B (also called MMP-2 and MMP-9) on the basement membrane in early alveolar remodeling, and that of collagenase-1 (MMP-1) on the major interstitial structural protein of ECM have received considerable attention. The interaction of MMPs with chemical mediators and inflammatory cytokines has also been reported in some recent studies. Several promising therapeutic approaches to inhibit MMPs have just started in the field of oncology, while more specific MMP inhibitors may be required for further investigation in other fields of lung diseases. In this review, the main focus is on the recent clinical and experimental findings and the contributions of MMPs and/or TIMPs in the lung diseases.  相似文献   

17.
In this study we have explored the potential of PUVB (8-MOP + UVB) therapy for the reduction of luminal narrowing after arterial injury. In 15 rabbits, balloon dilation of iliac arteries was performed. In 20 arteries, dilation was combined with the delivery of pulsed ultraviolet light B (UVB) irradiation with 10 arteries being previously subjected to sensitizer infusion. Changes in vessel diameter, proliferation and extracellular matrix protein content at 6 weeks were evaluated by means of angiography and histomorphometry-immunohistochemistry. We found that PUVB, applied at the time of dilation, induced reduction in late loss (LL) at 6 weeks (percutaneous transluminal angioplasty vs UVB vs PUVB: 0.64 +/- 0.15 mm vs 0.61 +/- 0.05 mm vs 0.29 +/- 0.05 mm; p = 0.018). The same holds true for constrictive remodeling (0.53 +/- 0.15 mm vs 0.45 +/- 0.06 mm vs 0.15 +/- 0.05 mm; p = 0.016). In the irradiation groups, LL was independent of acute gain (AG), as opposed to the control. Collagen content increased significantly after PUVB in media and adventitia, without increased cellular proliferation in all vessel layers. Thus, PUVB at the time of dilation reduced luminal narrowing at follow-up without effecting proliferation. This effect was independent of AG and was associated with increased collagen content in media and adventitia.  相似文献   

18.
UV irradiation induced formation of reactive oxygen radical species and matrix metalloproteinases (MMPs) are thought to be involved in photo-damage to the skin. MMP-1 is the major collagenolytic enzyme responsible for collagen destruction in skin tissue. To develop new anti-photoaging agents, a series of 2,2'-dithiocinnamate derivatives and 2,2'-dithio or 2-thiobenzoate derivatives were designed and synthesized. The biological activities of the synthesized compounds were assayed for ABTS [2,2'-azinobis-(3-ethyl-benzo-thiazoline-6-sulfonic acid)] radical scavenging activity, MMP-1 inhibitory activity, and cytotoxicity to human dermal fibroblast cells. Compounds with potential of resistance to UV irradiation were identified. These compounds are expected to be useful for preventing photo-damage to the skin.  相似文献   

19.
UVB irradiation is a well-known apoptosis induction factor. However, we have previously found that low doses of UVB irradiation inhibited apoptosis induced by both serum starvation and lack of extracellular matrix, involving a significant inhibition of caspase-3/7 activation. In this study, we report on the relationship between the UVB-induced anti-apoptotic effect and caspase-3/7 inhibition by reactive oxygen species (ROS). The UVB-induced antiapoptotic effect was partially prevented by an antioxidant agent, N-acetylcysteine. A ROS-generating agent, menadione and a pro-oxidant agent, H2O2 also showed an effect that was similar to the UVB-induced antiapoptotic effect, indicating that ROS contributed to the antiapoptotic effect. UVB irradiation significantly suppressed caspase-3/7 activation, which was caused by the inhibition of proteolysis and not by the inhibition of enzymatic activity itself. The prevention of proteolysis was also confirmed by both the following results: one is the inhibition of in vitro caspase-3/7 and -9 activation in cell lysates exposed to UVB in the presence of cytochrome c and dATP, which was caused by the production of ROS, and the other is the inhibition of in vitro caspase-3/7 activation in the presence of active caspase-9. These results showed that the inhibition of the caspase cascade downstream mitochondria by ROS production, leading to a significant inhibition of caspase-3/7 activation, was one of the causes of the antiapoptotic effect by small doses of UVB irradiation.  相似文献   

20.
The aim of the present paper was to examine the irradiation effect of two doses of UVA rays (365 nm) on the rabbit cornea and lens. Corneas of anesthetized adult albino rabbits were irradiated with UVA rays for 5 days (daily dose 1.01 J cm−2 in one group of rabbits and daily dose 2.02 J cm−2 in the second group of animals). The third day after the last irradiation, the rabbits were killed, and their eyes were employed for spectrophotometrical, biochemical and immunohistochemical investigations. Normal eyes served as controls. Absorption spectra of the whole corneal centers were recorded over the UV–VIS (visible) spectral range. Levels of antioxidant and prooxidant enzymes, nitric oxide synthases and nitric oxide (indirectly measured as nitrate concentration) were investigated in the cornea. Malondialdehyde, a byproduct of lipid peroxidation, was examined in the cornea and lens. The results show that the staining for endothelial nitric oxide synthase was more pronounced in corneas irradiated with the higher UVA dose. Otherwise, UVA rays at either dose did not significantly change corneal light absorption properties and did not cause statistically significant metabolic changes in the cornea or lens. In conclusion, UVA rays at the employed doses did not evoke harmful effects in the cornea or lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号