首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The marine diatom Haslea ostrearia was cultured under light of different qualities, white (WL), blue (BL), green (GL), yellow (YL), red (RL), and far-red (FRL) and at two irradiance levels, low and high (20 and 100 micromolphotonsm(-2)s(-1), respectively). The effects of the different light regimes were studied on growth, pigment content, and photosynthesis, estimated by the modulated fluorescence of chlorophyll, as relative electron transport rate (rETR). For all the light qualities studied, growth rates were higher at high irradiance. Compared to the corresponding WL controls, growth was higher in BL and lower in YL at low irradiance, and lower in YL and GL at high irradiance. Except for YL, almost all the pigment contents of the cells were lower at high irradiance. At low irradiance, cell pigment contents (chlorophyll a and c, fucoxanthin) and pigment ratios (in function of chlorophyll a) were lower in YL, RL, and FRL. Whatever the irradiance level, the maximum PSII quantum efficiency (F(v)/F(m) remained almost constant for WL, BL, and GL. Other fluorescence parameters (photochemical quenching, rETR(max), and alpha, the maximum light utilization coefficient) were lower in GL, YL, RL, and FRL, at low irradiance. Although not statistically significant, BL caused an increase in these fluorescence parameters. These findings are interpreted as evidence that inverse chromatic acclimation occurs in diatoms.  相似文献   

3.
A higher goal : An on‐wafer crystallization process to prepare pure silica zeolite (PSZ) MEL‐type films that is superior to the previously used hydrothermal process is reported. These striation‐free MEL‐type films (right, see picture) outperform the traditional spin‐on films (left) in terms of the κ value, mechanical properties, surface roughness, mesopore size, and size distribution.

  相似文献   


4.
Photosynthesis (Pn) and photomorphogenesis (Pm) are affected by light quality, light intensity and photoperiod. Although blue light (BL) is necessary for normal development, it is less efficient in driving Pn than other wavelengths of photosynthetically active radiation. The effects of BL on Pm are highly species dependent. Here we report the interacting effects of BL and photosynthetic photon flux (PPF) on growth and development of lettuce, radish and pepper. We used light‐emitting diode (LED) arrays to provide BL fractions from 11% to 28% under broad‐spectrum white LEDs, and from 0.3% to 92% under monochromatic LEDs. All treatments were replicated three times at each of two PPFs (200 and 500 μmol m?2 s?1). Other than light quality, environmental conditions were uniformly maintained across chambers. Regardless of PPF, BL was necessary to prevent shade‐avoidance responses in radish and lettuce. For lettuce and radish, increasing BL reduced stem length, and for both species, there were significant interactions of BL with PPF for leaf expansion. Increasing BL reduced petiole length in radish and flower number in pepper. BL minimally affected pepper growth and other developmental parameters. Pepper seedlings were more photobiologically sensitive than older plants. Surprisingly, there were few interactions between monochromatic and broad‐spectrum light sources.  相似文献   

5.
From the reaction of 1H‐imidazole ( 1a ), 4,5‐dichloro‐1H‐imidazole ( 1b ) and 1H‐benzimidazole ( 1c ) with p‐cyanobenzyl bromide ( 2 ), symmetrically substituted N‐heterocyclic carbene (NHC) [( 3a–c )] precursors, 1‐methylimidazole ( 5a ), 4,5‐dichloro‐1‐methylimidazole ( 5b ) and 1‐methylbenzimidazole ( 5c ) with benzyl bromide ( 6 ), non‐symmetrically substituted N‐heterocyclic carbene (NHC) [( 7a–c )] precursors were synthesized. These NHC? precursors were then reacted with silver(I) acetate to yield the NHC‐silver complexes [1,3‐bis(4‐cyanobenzyl)imidazole‐2‐ylidene] silver(I) acetate ( 4a ), [4,5‐dichloro‐1,3‐bis(4‐cyanobenzyl)imidazole‐2‐ylidene] silver(I) acetate ( 4b ), [1,3‐bis(4‐cyanobenzyl)benzimidazole‐2‐ylidene] silver(I) acetate ( 4c ), (1‐methyl‐3‐benzylimidazole‐2‐ylidene) silver(I) acetate ( 8a ), (4,5‐dichloro‐1‐methyl‐3‐benzylimidazole‐2‐ylidene) silver(I) acetate ( 8b ) and (1‐methyl‐3‐benzylbenzimidazole‐2‐ylidene) silver(I) acetate ( 8c ) respectively. The four NHC‐precursors 3a–c, 7c and four NHC–silver complexes 4a–c and 8c were characterized by single crystal X‐ray diffraction. The preliminary antibacterial activity of all the compounds was studied against Gram‐negative bacteria Escherichia coli, and Gram‐positive bacteria Staphylococcus aureus using the qualitative Kirby‐Bauer disc‐diffusion method. All NHC–silver complexes exhibited medium to high antibacterial activity with areas of clearance ranging from 4 to 12 mm at the highest amount used, while the NHC‐precursors showed significantly lower activity. In addition, all NHC–silver complexes underwent preliminary cytotoxicity tests on the human renal‐cancer cell line Caki‐1 and showed medium to high cytotoxicity with IC50 values ranging from 53 ( ± 8) to 3.2 ( ± 0.6) µM. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The Bigenelli acid catalyzed condensation of 2‐pyridylcarboxaldehyde ( 1 ), urea ( 2 ) and an alkyl acetoacetate ( 3 ) afforded the respective alkyl (Me, Et, i‐Pr, i‐Bu, t‐Bu) 6‐methyl‐4‐(2‐pyridyl)‐1,2,3,4‐tetrahydro‐2H‐pyrimidine‐2‐one‐5‐carboxylates ( 4a‐e ). The most potent calcium channel antagonist ethyl 6‐methyl‐4‐(2‐pyridyl)‐1,2,3,4‐tetrahydro‐2H‐pyrimidine‐2‐one‐5‐carboxylate ( 4b , IC50 = 1.67 × 10?5 M) wasa much weaker calcium channel antagonist than the reference drug nifedipine (Adalat®, IC50 = 1.40 × 10?8 M) on guinea pig ileal longitudinal smooth muscle (GPILSM). The alkyl 6‐methyl‐4‐(2‐pyridyl)‐1,2,3,4‐tetrahydro‐2H‐pyrimidine‐2‐one‐5‐carboxylates did not show any inotropic effect on heart since no increase, or decrease, in the contractile force of guinea pig left atrium was observed. These structure activity studies show that the alkyl 6‐methyl‐4‐(2‐pyridyl)‐1,2,3,4‐tetrahydro‐2H‐pyrimidine‐2‐one‐5‐carboxylates ( 4a‐e ) are partial bioisosteres of nifedipine with respect to calcium channel antagonist activity on guinea pig ileal longitudinal smooth muscle (GPILSM).  相似文献   

7.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

8.
Starting from 5‐hydroxymethyl‐2‐mercapto‐1‐methyl‐1H‐imidazole (1), a series of 2‐(1‐methyl‐2‐methylsulfonyl‐1H‐imidazol‐5‐yl)‐5‐alkylthio and 5‐alkylsulfonyl‐1,3,4‐thiadiazole derivatives ( 9a , 9b , 9c , 9d and 10a , 10b , 10c , 10d ) were prepared as potential antimicrobial agents. The structure of the obtained compounds was confirmed by NMR, IR, Mass spectroscopy, and elemental analysis. J. Heterocyclic Chem., (2010)  相似文献   

9.
The title compounds, 7‐aryl‐5,6‐dihydro‐14‐aza[1]benzopyrano[3,4‐b]phenanthren‐8H‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been synthesized by reacting various 4‐hydroxy coumarins 1a , 1b , 1c with 2‐arylidene‐1‐tetralones 2a , 2b , 2c , 2d in the presence of ammonium acetate and acetic acid under Krohnke's reaction condition. The structures of all the synthesized compounds were supported by analytical, IR, 1H‐NMR, and 13C‐NMR data. All the synthesized compounds 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been screened for their antibacterial activities against Escherichia coli (Gram ?ve bacteria), Bacillus subtilis (Gram +ve bacteria), and antifungal activity against Candida albicans (Fungi). J. Heterocyclic Chem., (2011).  相似文献   

10.
The cycloaddition reaction of cyclic imidates, 2‐benzyl‐5,6‐dihydro‐4H‐1,3‐oxazines 1a , 1b , 1c , 1d , 1e , 1f , with dimethyl acetylenedicarboxylate 2 , trimethyl ethylenetricarboxylate 4 , or dimethyl 2‐(methoxymethylene)malonate 6 afforded new fused heterocyclic compounds, such as methyl (6‐oxo‐3,4‐dihydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐ylidene)acetates 3a , 3b , 3c , 3d , 3e , 3f (71–79%), dimethyl 2‐(6‐oxo‐3,4,6,7‐tetrahydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐yl)malonates 5b , 5c , 5d , 5e , 5f (43–71%), or methyl 6‐oxo‐3,4‐dihydro‐2H,6H‐pyrido[2,1‐b]‐1,3‐oxazine‐7‐carboxylates 7a , 7b , 7c , 7d , 7e , 7f (32–59%), respectively. In these reactions, 1a , 1b , 1c , 1d , 1e , 1f (cyclic imidates, iminoethers) functioned as their N,C‐tautomers (enaminoethers) 2 to α,β‐unsaturated esters 2 , 4, and 6 to give annulation products 3 , 5 , and 7 following to the elimination of methanol, respectively. J. Heterocyclic Chem., (2011).  相似文献   

11.
Herein, we report a new drug‐delivery system (DDS) that is comprised of a near‐infrared (NIR)‐light‐sensitive gold‐nanorod (GNR) core and a phase‐changing poly(ε‐caprolactone)‐b‐poly(ethylene glycol) polymer corona (GNR@PCL‐b‐PEG). The underlying mechanism of the drug‐loading and triggered‐release behaviors involves the entrapment of drug payloads among the PCL crystallites and a heat‐induced phase change, respectively. A low premature release of the pre‐loaded doxorubicin was observed in PBS buffer (pH 7.4) at 37 °C (<10 % of the entire payload after 48 h). However, release could be activated within 30 min by conventional heating at 50 °C, above the Tm of the crystalline PCL domain (43.5 °C), with about 60 % release over the subsequent 42 h at 37 °C. The NIR‐induced heating of an aqueous suspension of GNR@PCL‐b‐PEG under NIR irradiation (802 nm) was investigated in terms of the irradiation period, power, and concentration‐dependent heating behavior, as well as the NIR‐induced shape‐transformation of the GNR cores. Remotely NIR‐triggered release was also explored upon NIR irradiation for 30 min and about 70 % release was achieved in the following 42 h at 37 °C, with a mild warming (<4 °C) of the surroundings. The cytotoxicity of GNR@PCL‐b‐PEG against the mouse fibroblastic‐like L929 cell‐line was assessed by MTS assay and good compatibility was confirmed with a cell viability of over 90 % after incubation for 72 h. The cellular uptake of GNR@PCL‐b‐PEG by melanoma MEL‐5 cells was also confirmed, with an averaged uptake of 1250(±110) particles cell?1 after incubation for 12 h (50 μg mL?1). This GNR@PCL‐b‐PEG DDS is aimed at addressing the different requirements for therapeutic treatments and is envisaged to provide new insights into DDS targeting for remotely triggered release by NIR activation.  相似文献   

12.
New fluorescent compounds, 2‐substituted indeno[1,2‐d]pyrimidin‐5‐ones ( 3a , 3b , 3c , 3d ) were synthesized in good yield by the reaction of 2‐[bis(methylsulfanyl)methylene]indan‐1,3‐dione ( 1 ) with the respective amidine derivatives [guanidine carbonate ( 2a ), acetamidine hydrochloride ( 2b ), S‐methylisothiourea sulfate ( 2c ), and S‐benzylisothiourea sulfate ( 2d )]. 4‐Substituted amino‐2‐aminoindeno[1,2‐d]pyrimidin‐5‐ones ( 7b , 7c , 7d ) were synthesized by a one‐pot reaction of 1 , 2a and the respective amine compounds ( 4b , 4c , 4d ) in pyridine. These fused pyrimidine derivatives showed fluorescence in the solid state.  相似文献   

13.
Herein, we present an innovative, novel, and highly convenient protocol for the synthesis of 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ), which have been delineated from the reaction of 4‐sec‐amino‐2‐oxo‐6‐aryl‐2H‐pyran‐3‐carbonitrile ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) and 4‐sec‐amino‐2‐oxo‐5,6‐dihydro‐2H‐benzo[h]chromene‐3‐carbonitriles ( 9a , 9b , 9c , 9d , 9e ) with 2‐acetylpyridine ( 5 ) through the ring transformation reaction by using KOH/DMF system at RT. The salient feature of this procedure is to provide a transition metal‐free route for the synthesis of asymmetrical 1,3‐teraryls like 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ). The novelty of the reaction lies in the creation of an aromatic ring from 2H‐pyran‐2‐ones and 2H‐benzo[h]chromene‐3‐carbonitriles via two‐carbon insertion from 2‐acetylpyridine ( 5 ) used as a source of carbanion.  相似文献   

14.
Photoinitiated reversible addition‐fragmentation chain transfer (RAFT) dispersion polymerization of 2‐hydroxypropyl methacrylate is conducted in water at low temperature using thermoresponsive copolymers of 2‐(2‐methoxyethoxy) ethyl methacrylate and oligo(ethylene glycol) methacrylate (Mn = 475 g mol−1) as the macro‐RAFT agent. Kinetic studies confirm that quantitative monomer conversion is achieved within 15 min of visible‐light irradiation (405 nm, 0.5 mW cm−2), and good control is maintained during the polymerization. The polymerization can be temporally controlled by a simple “ON/OFF” switch of the light source. Finally, thermoresponsive diblock copolymer nano‐objects with a diverse set of complex morphologies (spheres, worms, and vesicles) are prepared using this particular formulation.

  相似文献   


15.
Novel 6‐(1,2,3‐triazol‐4‐yl)‐5‐[(2‐(thiazol‐2‐yl)hydrazono)methyl]imidazo[2,1‐b ]thiazoles 7 , 9a , 9b , 9c , 9d , and 11 were prepared by reaction of thiosemicarbazone 5a , 5b with either hydrazonoyl chloride 6 , phenacylbromides 8 or 2‐bromo‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)ethanone 10 respectively. The new products were tested for their antimicrobial activities using 96‐well micro‐plate assay, and compound 7 showed excellent antibacterial activities compared with Vancomycine (reference drugs), while compounds 5b and 9c exhibited good results against yeast. The minimum inhibitory concentration (MIC) was determined, and compound 7 showed the lowest MIC against Gram positive bacteria while compound 5b showed the lowest MIC against yeast.  相似文献   

16.
The 5,6,7,8,9,10‐hexahydro‐2‐methylthiopyrimido[4,5‐b]quinolines 4a , 4b , 4c , 4d , 5a , 5b , 5c , 5d and their oxidized forms 6a , 6b , 6c , 6d , 7a , 7b , 7c , 7d were obtained from the reaction of 6‐amino‐2‐(methylthio)pyrimidin‐4(3H)‐one 2 or 6‐amino‐3‐methyl‐2‐(methylthio)pyrimidin‐4(3H)‐one 3 and α,β‐unsaturated ketones 1a , 1b , 1c , 1d using BF3.OEt2 as catalyst and p‐chloranil as oxidizing agent. Some of the new compounds were evaluated in the US National Cancer Institute (NCI), where compound 5a presented remarkable activity against 46 cancer cell lines, with the most important GI50 values ranging from 0.72 to 18.4 μM from in vitro assays.  相似文献   

17.
Ring closure of 2‐N‐benzylamino‐3‐aroylpropionic acids ( 3 ) with acetic anhydride afforded 3‐N‐benzylamino‐5‐aryl‐2(3H)‐furanones ( 4 ). The reaction of the furanones ( 4 ) with benzylamine in benzene was found to be time dependent. Thus refluxing the reaction mixture for 1 h only afforded the open‐chain amides ( 5a‐c ). When the reaction was conducted for 3 h the 2(3H)‐pyrrolones ( 6 ) were obtained. Hydrazine hydrate affected ring opening of the furanones to give the hydrazides ( 5d‐f ). Also, semicarbazide converted ( 4 ) into the corresponding semicarbazide derivatives ( 5g‐i ). The hydrazides ( 5d‐f ) were reacted with benzoyl chloride to give the corresponding diaroylhydrazines ( 5j‐l ). The open‐chain derivatives ( 5 ) were converted into a variety of heterocycles: isothiazolones ( 7 ), dihydropyridazinones ( 8 ), 1,3,4‐oxadiazoles ( 9 ) and 1,2,4‐triazole derivatives ( 10 ) via cyclization reactions.  相似文献   

18.
The reactivity of (thiacyclic)‐2,3‐dihydro‐2,2‐dimethyl‐4H‐thiopyran‐4‐one ( 1a ) in light‐induced cycloadditions to furan ( F ), acrylonitrile ( AN ), or 2,3‐dimethylbut‐2‐ene ( TME ) is compared to that of (carbocyclic) 5,5‐dimethylcyclohex‐2‐enone ( 1b ). Whereas for the more‐flexible thiacycle, the efficiency of [2+2]‐photocycloadduct formation with AN or TME is generally much lower, the diastereoselectivity regarding the ring fusion in the bicyclo[4.2.0]octanes is quite similar for both enones. In contrast, 1a affords exclusively trans‐fused [4+2] cycloadducts with F , while 1b gives predominantly the corresponding cis‐fused products.  相似文献   

19.
The reactions of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, L1 ) with 2‐thiophen carbaldehyde, salicylaldehyde and 2‐nitrobenzaldehyde in methanol led to the corresponding Schiff‐bases ( L1a‐c ). The reaction of L1 with [(PPh3)2Cu]NO3 in ethanol gave the ionic complex [(PPh3)2Cu(L1)]NO3·EtOH ( 2 ) All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for L1a at 20 °C: space group P21/n with a = 439.6(2), b = 2074.0(9), c = 1112.8(4) pm, β = 93.51(3)°, Z = 4, R1 = 0.0406, L1b at ?80 °C: space group P21/n with a = 1268.9(2), b = 739.3(1), c = 1272.5(1) pm, β = 117.97(1)°, Z = 4, R1 = 0.0361, L1c at ?80 °C: space group P21/n with a = 847.8(1), b = 1502.9(2), c = 981.5(2) pm, β = 110.34(1)°, Z = 4, R1 = 0.0376 and for 2 at ?80 °C: space group with a = 1247.8(1), b = 1270.3(1), c = 1387.5(1) pm, α = 84.32(1)°, β = 84.71(1)°, γ = 63.12(1)°, Z = 2, R1 = 0.0539.  相似文献   

20.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号