首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biologically-based recognition elements (e.g., antibodies, aptamers, enzymes, etc.) are used as the recognition element within a wide variety of assays and sensor systems. There are, however, compelling reasons for researchers to develop inexpensive, robust, and reusable alternatives for these expensive and unstable biorecognition elements. This review summarizes recent research efforts on the development of molecularly templated (sometimes called molecularly imprinted) organic and inorganic polymers as possible replacements for expensive/labile biorecognition elements. The review begins with a briefing on biosensing and the pertinent issues and limitations. The focus then swings toward molecularly templating within organic and inorganic (xerogels) polymers to create materials with analyte binding characteristics akin to a biorecognition element. The review then describes several recent developments wherein analyte recognition and an analyte-dependent transduction methodology are simultaneously incorporated directly within the templated materials. The review ends by outlining the current state-of-the-art and the remaining issues and impediments.  相似文献   

2.
3.
荧光传感材料作为有机半导体光电功能材料的重要组成之一,以其灵敏度高、选择性强、响应速度快等优势,成为当前化学传感领域的一个研究热点,近年来在反恐、禁毒等领域有着广泛的应用.然而目前,对荧光敏感材料各项性能参数的设计与优化,依然存在着经验性问题,需要基于构效结合思维,从待测物质的分子层次的物性认知出发,更有针对性地设计相应的传感材料.本文基于国内外前沿工作,结合本课题组多年在危险化学品荧光传感方向的经验,以爆炸物、神经毒剂和合成毒品的检测为例,对荧光敏感材料的设计原则和传感的分子级微观作用机制进行了系统论述.  相似文献   

4.
Sun X  Xia K  Liu B 《Talanta》2008,76(4):747-751
This paper details the fabrication of indole (ID) self-assembled multilayers (SAMs) and fluorescence interfacial sensing for organophosphorus (OP) pesticides. Quartz/APES/AuNP/l-Cys/ID film was constructed on l-cysteine modified Quartz/APES/AuNP surface via electrostatic attraction between ID and l-cysteine. Cyclic voltammetry indicates that ID is immobilized successfully on the gold surface. Fluorescence of the Quartz/APES/AuNP/l-Cys/ID film shows sensitive response toward OPs. The fluorescent sensing conditions of the SAMs are optimized that allow linear fluorescence response for methylparathion and monocrotophos over 5.97 × 10−7 to 3.51 × 10−6 g L−1 and 3.98 × 10−6 to 3.47 × 10−5 g L−1, with detection limit of 6.1 × 10−8 gL−1 and 3.28 × 10−6 gL−1, respectively. Compared to bulk phase detection, interfacial fluorescence sensing based on the SAMs technology shows higher sensitivity by at least 2 order of magnitude.  相似文献   

5.
Low-cost sensors with high sensitivity and selectivity for chemical and biological detection are of high scientific and economic importance. Silica nanoparticles (NPs) have shown vast promise in sensor applications by virtue of their controllable surface modification, good chemical stability, and biocompatibility. This mini-review summarizes our recent development of silica NP-based assays for chemical and biological detection, where silica NPs serve as the substrate for probe immobilization, target recognition, and separation. The assay performance is further improved through the introduction of conjugated polyelectrolyte to amplify the detection signal. The assays have been demonstrated to be successful for the detection of DNA, small molecules, and proteins. They could be generalized for other targets based on specific interactions, such as DNA hybridization, antibody-antigen recognition, and target-aptamer binding.  相似文献   

6.
《Supramolecular Science》1996,3(1-3):31-36
Cyclodextrins (CDs), which are spectroscopically inert, were converted into fluorescent CDs by modification with one or two fluorophores. Many fluorescent CDs changed the fluorescent intensities upon addition of guest compounds, causing the locational change of the fluorophore mostly from inside to outside of the CD cavities. On this basis, the fluorescent CDs were used as fluorescent chemosensors for molecule recognition. Modified CDs bearing two naphthalene or pyrene moieties exhibit intramolecular excimer emission and their guest-responsive excimer intensity variations were used for molecule sensing. Fluorescent CDs bearing a dansyl moiety decreased the fluorescence intensity upon guest addition, reflecting the environmental change around the fluorophore from the hydrophobic interior of the CD cavities to bulk water solution. Modified CDs bearing a p-N,N-dimethylaminobenzoyl (DMAB) moiety exhibit dual emissions from nonpolar planar (NP) and twisted intramolecular charge transfer (TICT) excited states, and the TICT emission intensity was useful for sensing molecules. A biotin-bound DMAB system was also constructed, and the presence of the protein (avidin) was found to enhance the NP fluorescence. This avidin-bound DMAB system showed higher sensitivities and stronger binding ability for guest species than the system without avidin.  相似文献   

7.
8.
A facile reprecipitation-encapsulation method is used for the preparation of ratiometric fluorescent nanoparticles (NPs) for sensing intracellular oxygen. The surface of the NPs is modified in-situ with poly-L-lysine, which renders good biocompatibility and enables easy internalization into living cells. The sensor NPs contain a red fluorescent probe whose fluorescence is sensitive to oxygen with a quenching response of 77 % on going from nitrogen saturation to oxygen saturation, and a reference dye giving a green signal that acts as an oxygen-independent reference. The ratio of the two emissions serves as the analytical information and is sensitive to dissolved oxygen in the 0–43?ppm concentration range. When incorporated into cells, the ratio of the signals increases by 400?% on going from oxygen-saturated to oxygen-free environment.
Figure
Dissolved oxygen could be visually detected using the ratiometric nanoparticles. Under single-wavelength excitation, red fluorescence is highly sensitive to oxygen, whereas green fluorescence keeps constantly.  相似文献   

9.
The urea functionalised phenanthroline sensor 1, which was characterised by several methods, including X-ray crystallography, gives rise to large changes in the fluorescence emission spectra upon interaction with several anions such as acetate, phosphate, fluoride and chloride in CH3CN. However, only in the presence of Cl was the emission enhanced, as for the other ions photoinduced electron transfer (PET) quenching was observed. Fitting these fluorescence changes, using non-linear regression analysis, showed that these anions bind to 1 in 1:1 (anion:sensor) stoichiometry, with the exception of Cl, which was shown to give rise to 1:1 as well as 1:2 binding, as a result of coordination of the chloride to two equivalents of 1.  相似文献   

10.
An anthracene-based macrocyclic receptor has been designed and synthesized for selective recognition of 1,4-phenylenediacetate (Ka = 3.34 × 105 M?1). The macrocycle binds 1,4-phenylenediacetate selectively at the charged sites of the receptor with a concomitant increase in fluorescence of anthracene. The interaction properties of the macrocycle were evaluated by 1H NMR, UV–vis and fluorescence spectroscopic methods.  相似文献   

11.
Dual fluorescent labelling of cellulose nanocrystals for pH sensing   总被引:1,自引:0,他引:1  
Cellulose nanocrystals were converted into ratiometric pH-sensing nanoparticles by dual fluorescent labelling employing a facile one-pot procedure. A simple and versatile three-step procedure was also demonstrated extending the number of fluorophores available for grafting. In this method an amine group was introduced via esterification followed by a thiol-ene click reaction.  相似文献   

12.
Sol–gel encapsulation has been used as the basis for detecting cortisol by an immunoassay approach. Previous research showed that antibodies immobilized in the pores of a sol–gel derived silica were able to bind cortisol and be used as an immunosensor. However, this approach was not effective when measuring cortisol levels in human serum because of interference from other fluorescence sources. The present paper describes a protocol which overcomes these limitations and enables sol–gel immunoassays to effectively measure cortisol in human serum over the physiological range of cortisol blood concentrations in an adult (2–28 μg/dL). The method involves a standard additions approach in which various amounts of cortisol are added to the serum. The cortisol concentration values obtained with our sol–gel immunoassay were typically within 10% of the values obtained by traditional analytical methods. The protocol presented here represents a significant contribution to sol–gel sensing and immunoassays in particular, because of the ability to detect an analyte in human serum. In addition, this work reports the first comparison between results from a sol–gel immunosensor and an alternative immuno-binding method for analyte detection.  相似文献   

13.
pH-responsive fluorescent core-shell silica nanoparticles (SiNPs) were prepared by encapsulating the pH-sensitive fluorophore 8-hydroxypyrene-1,3, 6-trisulfonate into their silica shell via a facile reverse microemulsion method. The resulting SiNPs were characterized by SEM, TEM, fluorescence lifetime spectroscopy, photobleaching experiments, and photoluminescence. The core-shell structure endows the SiNPs with reduced photobleaching, excellent photostability, minimized solvatachromic shift, and increased fluorescence efficiency compared to the free fluorophore in aqueous solution. The dynamic range for sensing pH ranges from 5.5 to 9.0. The nanosensors show excellent stability, are highly reproducible, and enable rapid detection of pH. The results obtained with the SiNPs are in good agreement with data obtained with a glass electrode.
Figure
Single-nanoparticle laboratories: core-shell silica fluorescent nanoparticles for pH sensing  相似文献   

14.
15.
The pH values of lysosomes in cancer cells is slightly lower than that in normal cells, which can be used to distinguish cancer cells from normal cells. According to this, a naphthalimide-rhodamine based fluorescent probe(hereafter referred to as RBN) with a pK_a of 4.20 was designed and synthesized for ratiometric sensing of cellular pH via fluorescence resonance energy transfer(FRET), which can respond to different pH precisely through ratiometric fluorescence intensity(Ⅰ_(577)/Ⅰ_(540)). RBN can be employed to distinguish cancer cells from normal cells on the basis of different fluorescent response, in particular, RBN showed excellent water solubility and low cell toxicity, all these are quite significant for potential application in cancer diagnose and therapy.  相似文献   

16.
Metal–organic frameworks(MOFs) are a fascinating class of crystalline materials constructed from selfassembly of metal cations/clusters and organic ligands. Both metal and organic components can be used to generate luminescence, and can further interact via antenna effect to increase the quantum yield,providing a versatile platform for chemical sensing based on luminescence emission. Moreover, MOFs can be miniaturized to nanometer scale to form nano-MOF(NMOF) materials, which exhibit many advantages over conventional bulk MOFs in terms of the facile tailorability of compositions, sizes and morphologies, the high dispersity in a wide variety of medium, and the intrinsic biocompatibility. This review will detail the development of NMOF materials as chemical sensors, including the synthetic methodologies for designing NMOF sensory materials, their luminescent properties and potential sensing applications.  相似文献   

17.
Fluorescent nanoparticles (NPs), including quantum dots (QDs), dye-doped NPs, and rare earth-based NPs, etc., have been a major focus of research and development during the past decade. The impetus behind such endeavors can be attributed to their unique chemical and optical properties, such as bright fluorescence, high photostability, large Stocks shift and flexible processability. The introduction of fluorescent NPs into analytical chemistry has opened up new venues for fluorescent analysis. In this review...  相似文献   

18.
Two-dimensional mesoporous materials combing ultrathin nanosheet morphology with well-defined mesoporous structures,are now emerging and becoming increasingly important for their promising applications in energy storage,electronic devices,electrocatalysts and so on.Here,we synthesized a kind of polypyrrole-based two-dimensional mesoporous materials with uniform pore size,ultrathin thickness and high surface area.Serving for electrochemical NH3 sensor,they exhibited a fast response and high sensitivity.Therefore,our study would promote much interest in design of new materials for gas sensor applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号