首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We study the minimum variant of the online open end bin packing problem. Items are presented one by one, and an item can be packed into a bin while the resulting total size of items excluding the minimum size item of the bin will be below 1. We design an improved online algorithm whose asymptotic competitive ratio does not exceed 1.180952381, and we prove a new lower bound of 1.1666666 on the asymptotic competitive ratio of any online algorithm.  相似文献   

2.
ABSTRACT

We investigate a forward–backward splitting algorithm of penalty type with inertial effects for finding the zeros of the sum of a maximally monotone operator and a cocoercive one and the convex normal cone to the set of zeroes of an another cocoercive operator. Weak ergodic convergence is obtained for the iterates, provided that a condition expressed via the Fitzpatrick function of the operator describing the underlying set of the normal cone is verified. Under strong monotonicity assumptions, strong convergence for the sequence of generated iterates is proved. As a particular instance we consider a convex bilevel minimization problem including the sum of a non-smooth and a smooth function in the upper level and another smooth function in the lower level. We show that in this context weak non-ergodic and strong convergence can be also achieved under inf-compactness assumptions for the involved functions.  相似文献   

3.
We describe a new convex quadratic programming bound for the quadratic assignment problem (QAP). The construction of the bound uses a semidefinite programming representation of a basic eigenvalue bound for QAP. The new bound dominates the well-known projected eigenvalue bound, and appears to be competitive with existing bounds in the trade-off between bound quality and computational effort. Received: February 2000 / Accepted: November 2000?Published online January 17, 2001  相似文献   

4.
We discuss an online discrete optimization problem called the buyback problem. In the literature of the buyback problem, the valuation function representing the total value of selected elements is given by a linear function. In this paper, we consider a generalization of the buyback problem using nonlinear valuation functions. We propose an online algorithm for the problem with discrete concave valuation functions, and show that it achieves the tight competitive ratio, i.e., the competitive ratio of the proposed algorithm is equal to the known lower bound for the problem.  相似文献   

5.
Abstract

The problem of minimizing a smooth convex function over a specific cone in IRn is frequently encountered in nonparametric statistics. For that type of problem we suggest an algorithm and show that this algorithm converges to the solution of the minimization problem. Moreover, a simulation study is presented, showing the superiority of our algorithm compared to the EM algorithm in the interval censoring case 2 setting.  相似文献   

6.
We consider a class of problems of resource allocation under economies of scale, namely that of minimizing a lower semicontinuous, isotone, and explicitly quasiconcave cost function subject to linear constraints. An important class of algorithms for the linearly constrained minimization of nonconvex cost functions utilize the branch and bound approach, using convex underestimating cost functions to compute the lower bounds.We suggest instead the use of the surrogate dual problem to bound subproblems. We show that the success of the surrogate dual in fathoming subproblems in a branch and bound algorithm may be determined without directly solving the surrogate dual itself, but that a simple test of the feasibility of a certain linear system of inequalities will suffice. This test is interpreted geometrically and used to characterize the extreme points and extreme rays of the optimal value function's level sets.Research partially supported by NSF under grant # ENG77-06555.  相似文献   

7.
In this paper, we consider the online strip packing problem, in which a list of online rectangles has to be packed without overlap or rotation into one or more strips of width 1 and infinite height so as to minimize the required height of the packing. By analyzing a two-phase shelf algorithm, we derive a new upper bound 6.4786 on the competitive ratio for online one strip packing. This result improves the best known upper bound of 6.6623. We also extend this algorithm to online multiple strips packing and present some numeric upper bounds on their competitive ratios which are better than the previous bounds.  相似文献   

8.
This article is devoted to developing the generalized proximal algorithm of finding efficient solutions to the vector optimization problem for a mapping from a uniformly convex and uniformly smooth Banach space to a real Banach space with respect to the partial order induced by a pointed closed convex cone. In contrast to most published literature on this subject, our algorithm does not depend on the nonemptiness of ordering cone of the space under consideration and deals with finding efficient solutions of the vector optimization problem in question. We prove that under some suitable conditions the sequence generated by our method weakly converges to an efficient solution of this problem.  相似文献   

9.
We introduce an entropy-like proximal algorithm for the problem of minimizing a closed proper convex function subject to symmetric cone constraints. The algorithm is based on a distance-like function that is an extension of the Kullback-Leiber relative entropy to the setting of symmetric cones. Like the proximal algorithms for convex programming with nonnegative orthant cone constraints, we show that, under some mild assumptions, the sequence generated by the proposed algorithm is bounded and every accumulation point is a solution of the considered problem. In addition, we also present a dual application of the proposed algorithm to the symmetric cone linear program, leading to a multiplier method which is shown to possess similar properties as the exponential multiplier method (Tseng and Bertsekas in Math. Program. 60:1–19, 1993) holds.  相似文献   

10.
A coordinate gradient descent method for nonsmooth separable minimization   总被引:1,自引:0,他引:1  
We consider the problem of minimizing the sum of a smooth function and a separable convex function. This problem includes as special cases bound-constrained optimization and smooth optimization with ?1-regularization. We propose a (block) coordinate gradient descent method for solving this class of nonsmooth separable problems. We establish global convergence and, under a local Lipschitzian error bound assumption, linear convergence for this method. The local Lipschitzian error bound holds under assumptions analogous to those for constrained smooth optimization, e.g., the convex function is polyhedral and the smooth function is (nonconvex) quadratic or is the composition of a strongly convex function with a linear mapping. We report numerical experience with solving the ?1-regularization of unconstrained optimization problems from Moré et al. in ACM Trans. Math. Softw. 7, 17–41, 1981 and from the CUTEr set (Gould and Orban in ACM Trans. Math. Softw. 29, 373–394, 2003). Comparison with L-BFGS-B and MINOS, applied to a reformulation of the ?1-regularized problem as a bound-constrained optimization problem, is also reported.  相似文献   

11.
A Cutting Plane Algorithm for Linear Reverse Convex Programs   总被引:1,自引:0,他引:1  
In this paper, global optimization of linear programs with an additional reverse convex constraint is considered. This type of problem arises in many applications such as engineering design, communications networks, and many management decision support systems with budget constraints and economies-of-scale. The main difficulty with this type of problem is the presence of the complicated reverse convex constraint, which destroys the convexity and possibly the connectivity of the feasible region, putting the problem in a class of difficult and mathematically intractable problems. We present a cutting plane method within the scope of a branch-and-bound scheme that efficiently partitions the polytope associated with the linear constraints and systematically fathoms these portions through the use of the bounds. An upper bound and a lower bound for the optimal value is found and improved at each iteration. The algorithm terminates when all the generated subdivisions have been fathomed.  相似文献   

12.
《Optimization》2012,61(8):1173-1197
We consider a class of derivative-free descent methods for solving the second-order cone complementarity problem (SOCCP). The algorithm is based on the Fischer–Burmeister (FB) unconstrained minimization reformulation of the SOCCP, and utilizes a convex combination of the negative partial gradients of the FB merit function ψFB as the search direction. We establish the global convergence results of the algorithm under monotonicity and the uniform Jordan P-property, and show that under strong monotonicity the merit function value sequence generated converges at a linear rate to zero. Particularly, the rate of convergence is dependent on the structure of second-order cones. Numerical comparisons are also made with the limited BFGS method used by Chen and Tseng (An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Program. 104(2005), pp. 293–327), which confirm the theoretical results and the effectiveness of the algorithm.  相似文献   

13.
We consider the problem of minimizing a smooth convex objective function subject to the set of minima of another differentiable convex function. In order to solve this problem, we propose an algorithm which combines the gradient method with a penalization technique. Moreover, we insert in our algorithm an inertial term, which is able to take advantage of the history of the iterates. We show weak convergence of the generated sequence of iterates to an optimal solution of the optimization problem, provided a condition expressed via the Fenchel conjugate of the constraint function is fulfilled. We also prove convergence for the objective function values to the optimal objective value. The convergence analysis carried out in this paper relies on the celebrated Opial Lemma and generalized Fejér monotonicity techniques. We illustrate the functionality of the method via a numerical experiment addressing image classification via support vector machines.  相似文献   

14.
 In this paper, we describe how to reformulate a problem that has second-order cone and/or semidefiniteness constraints in order to solve it using a general-purpose interior-point algorithm for nonlinear programming. The resulting problems are smooth and convex, and numerical results from the DIMACS Implementation Challenge problems and SDPLib are provided. Received: March 10, 2001 / Accepted: January 18, 2002 Published online: September 27, 2002 Key Words. semidefinite programming – second-order cone programming – interior-point methods – nonlinear programming Mathematics Subject Classification (2000): 20E28, 20G40, 20C20  相似文献   

15.
This paper presents a coordinate gradient descent approach for minimizing the sum of a smooth function and a nonseparable convex function. We find a search direction by solving a subproblem obtained by a second-order approximation of the smooth function and adding a separable convex function. Under a local Lipschitzian error bound assumption, we show that the algorithm possesses global and local linear convergence properties. We also give some numerical tests (including image recovery examples) to illustrate the efficiency of the proposed method.  相似文献   

16.
We study on-line bounded space bin-packing in the resource augmentation model of competitive analysis. In this model, the on-line bounded space packing algorithm has to pack a list L of items with sizes in (0, 1], into a minimum number of bins of size b, b≥1. A bounded space algorithm has the property that it only has a constant number of active bins available to accept items at any point during processing. The performance of the algorithm is measured by comparing the produced packing with an optimal offline packing of the list L into bins of size 1. The competitive ratio then becomes a function of the on-line bin size b. Csirik and Woeginger studied this problem in [J. Csirik, G.J. Woeginger, Resource augmentation for online bounded space bin packing, Journal of Algorithms 44(2) (2002) 308-320] and proved that no on-line bounded space algorithm can perform better than a certain bound ρ(b) in the worst case. We relax the on-line condition by allowing a complete repacking within the active bins, and show that the same lower bound holds for this problem as well, and repacking may only allow one to obtain the exact best possible competitive ratio of ρ(b) having a constant number of active bins, instead of achieving this bound in the limit. We design a polynomial time on-line algorithm that uses three active bins and achieves the exact best possible competitive ratio ρ(b) for the given problem.  相似文献   

17.
This article presents a global optimization algorithm for globally maximizing the sum of concave–convex ratios problem with a convex feasible region. The algorithm uses a branch and bound scheme where a concave envelope of the objective function is constructed to obtain an upper bound of the optimal value by using conical partition. As a result, the upper-bound subproblems during the algorithm search are all ordinary convex programs with less variables and constraints and do not grow in size from iterations to iterations in the computation procedure, and furthermore a new bounding tightening strategy is proposed such that the upper-bound convex relaxation subproblems are closer to the original nonconvex problem to enhance solution procedure. At last, some numerical examples are given to vindicate our conclusions.  相似文献   

18.
《Optimization》2012,61(11):2307-2320
We discuss accelerated version of the alternating projection method which can be applied to solve the linear matrix inequality (LMI) problem. The alternating projection method is a well-known algorithm for the convex feasibility problem, and has many generalizations and extensions. Bauschke and Kruk proposed a reflection projection algorithm for computing a point in the intersection of an obtuse cone and a closed convex set. We carry on this research in two directions. First, we present an accelerated version of the reflection projection algorithm, and prove its weak convergence in a Hilbert space; second, we prove the finite termination of an algorithm which is based on the proposed algorithm and provide an explicit upper bound for the required number of iterations under certain assumptions. Numerical experiments for the LMI problem are provided to demonstrate the effectiveness and merits of the proposed algorithms.  相似文献   

19.
In this paper we investigate the relationship between the nearest point problem in a polyhedral cone and the nearest point problem in a polyhedral set, and use this relationship to devise an effective method for solving the latter using an existing algorithm for the former. We then show that this approach can be employed to minimize any strictly convex quadratic function over a polyhedral set. Through a computational experiment we evaluate the effectiveness of this approach and show that for a collection of randomly generated instances this approach is more effective than other existing methods for solving these problems.  相似文献   

20.
In this paper, we introduce the notion of a self-regular function. Such a function is strongly convex and smooth coercive on its domain, the positive real axis. We show that any such function induces a so-called self-regular proximity function and a corresponding search direction for primal-dual path-following interior-point methods (IPMs) for solving linear optimization (LO) problems. It is proved that the new large-update IPMs enjoy a polynomial ?(n log) iteration bound, where q≥1 is the so-called barrier degree of the kernel function underlying the algorithm. The constant hidden in the ?-symbol depends on q and the growth degree p≥1 of the kernel function. When choosing the kernel function appropriately the new large-update IPMs have a polynomial ?(lognlog) iteration bound, thus improving the currently best known bound for large-update methods by almost a factor . Our unified analysis provides also the ?(log) best known iteration bound of small-update IPMs. At each iteration, we need to solve only one linear system. An extension of the above results to semidefinite optimization (SDO) is also presented. Received: March 2000 / Accepted: December 2001?Published online April 12, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号