首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1994, we first determined the single-electron-transfer (SET) oxidation ability of phenyliodine(III) bis(trifluoroacetate) (PIFA) toward phenyl ethers, affording the corresponding aromatic cation radicals. Since then, hypervalent iodine(III) has been utilized as a selective and efficient SET oxidizing agent that enables a variety of direct C-H functionalizations of aromatic rings in electron-rich arenes under mild conditions. We have now extended the original method to work in a series of heteroaromatic compounds such as thiophenes, pyrroles, and indoles. The investigations and results obtained since the start of this century are summarized in this article.  相似文献   

2.
An effective and condition-controlled way to synthesize with high selectivity a variety of functionalized indoles with potent biological properties has been developed. Notably, 2,4-dialkynyl indole products were obtained by direct double C−H bond alkynylation, whereas alkynyl at the C4 position could convert to carbonyl to generate 2-alkynyl-3,4-diacetyl indoles fast and effectively. Additionally, a one-pot relay catalytic reaction led to 2,5-di-alkynyl-3,4-diacetyl indoles when using a carbonyl group as the directing group and by controlling the type and quantity of additives. A possible mechanism was proposed based on many studies including deuterium-exchange experiments, the necessary conditions of product conversion, and the effect of water on the reaction.  相似文献   

3.
Hypervalent iodine(III) reagents mediate the direct cyanating reaction of a wide range of electron-rich heteroaromatic compounds such as pyrroles 1, thiophenes 3, and indoles 5 under mild conditions (ambient temperature), without the need for any prefunctionalization. Commercially available trimethylsilylcyanide is usable as a stable and effective cyanide source, and the reaction proceeds in a homogeneous system. The N-substituent of pyrroles is crucial to avoid the undesired oxidative bipyrrole coupling process, and thus a cyano group was introduced selectively at the 2-position of N-tosylpyrroles 1 in good yields using the combination of phenyliodine bis(trifluoroacetate) (PIFA), TMSCN, and BF3.Et2O at room temperature. In the reaction mechanism, cation radical intermediates of heteroaromatic compounds are involved as a result of single electron oxidation, and the key to successful transformations seems to depend on the oxidation potential of the substrates used. Thus, the reaction was also successfully extended to other heteroaromatic compounds having oxidation potentials similar to that of N-tosylpyrroles such as thiophenes 3 and indoles 5. However, regioisomeric mixtures of the products derived from the reaction at the 2- and 3-positions were obtained in the case of N-tosylindole 5a. Further investigation performed in our laboratory provided insights into the real active iodine(III) species during the reaction; the reaction is induced by an active hypervalent iodine(III) species having a cyano ligand in situ generated by ligand exchange reaction at the iodine(III) center between trifluoroacetoxy group in PIFA and TMSCN, and effective cyanide introduction into heteroaromatic compounds is achieved by means of the high cyano transfer ability of the hypervalent iodine(III)-cyano intermediates. In fact, the reaction of N-tosylpyrrole 1a with a hypervalent iodine(III)-cyano compound (e.g., (dicyano)iodobenzene 8), in the absence of TMSCN, took place to afford the 2-cyanated product 2a in good yield, and an effective preparation of the intermediates is of importance for successful transformation. 1,3,5,7-Tetrakis[4-{bis(trifluoroacetoxy)-iodo}phenyl]adamantane 12, a recyclable hypervalent iodine(III) reagent, was also comparable in the cyanating reactions as a valuable alternative to PIFA, affording a high yield of the heteroaromatic cyanide by facilitating isolation of the cyanated products with a simple workup. Accordingly, after preparing the active hypervalent iodine(III)-CN species by premixing of a recyclable reagent 12, TMSCN, and BF3.Et2O for 30 min in dichloromethane, reaction of a variety of pyrroles 1 and thiophenes 3 provided the desired cyanated products 2 and 4 in high yields. The iodine compound 13, recovered by filtration after replacement of the reaction solvent to MeOH, could be reused without any loss of activity (the oxidant 12 can be obtained nearly quantitatively by reoxidation of 13 using m-CPBA).  相似文献   

4.
The hypervalent iodine(III) reagent phenyliodine bis(trifluoroacetate) (PIFA) mediates the selective cyanation reactions of a wide range of electron-rich heteroaromatic compounds such as pyrroles, thiophenes, and indoles under mild conditions. These reactions proceed via a cation radical intermediate, and the key for the successful transformation presumably depends on the oxidation-reduction potential of the substrates used. The synthetic utility has been demonstrated through the conversion of these biologically important pyrroles 2f and 2g. [reaction: see text]  相似文献   

5.
With the IPr ligand (IPr=1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene) on gold(I) excellent yields in the benzanellation of 2-substituted thiophenes, benzothiophenes, pyrroles, benzofurans, and indoles were achieved. The 1-siloxybut-3-ynyl side chains, incorporated in the anellation, are easily accessible by the addition of a propargyl metal reagent to a formyl group and silylation of the alcohol. This conveniently allows an anellation at the position of the formyl group under mild conditions. All reactions involve a 2,3-shift of the side chain in the anellation step and thus, provide an easy access to specific substitution patterns. Only in the case of 2-substituted indoles with their highly nucleophilic 3-position a direct hydroarylation without shift is observed. On the other hand, 3-substituted indoles give the same products as 2-substituted indoles. Then, a 3,2-shift in the indole ring system has to be involved.  相似文献   

6.
With the IPr ligand (IPr=1,3‐bis‐(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) on gold(I) excellent yields in the benzanellation of 2‐substituted thiophenes, benzothiophenes, pyrroles, benzofurans, and indoles were achieved. The 1‐siloxybut‐3‐ynyl side chains, incorporated in the anellation, are easily accessible by the addition of a propargyl metal reagent to a formyl group and silylation of the alcohol. This conveniently allows an anellation at the position of the formyl group under mild conditions. All reactions involve a 2,3‐shift of the side chain in the anellation step and thus, provide an easy access to specific substitution patterns. Only in the case of 2‐substituted indoles with their highly nucleophilic 3‐position a direct hydroarylation without shift is observed. On the other hand, 3‐substituted indoles give the same products as 2‐substituted indoles. Then, a 3,2‐shift in the indole ring system has to be involved.  相似文献   

7.
C. Praveen 《Tetrahedron》2009,65(45):9244-4173
An efficient synthesis of 3-substituted indoles by a sequential approach involving gold(I) chloride catalyzed cycloisomerization/bis-addition and conjugate addition of 2-(alkynyl)anilines has been accomplished. A variety of 2-(alkynyl)anilines, aldehydes, isatins and nitroolefins undergo this overall process in good to excellent yields. This methodology represents an effective alternative to the classical C3-functionalization of indoles.  相似文献   

8.
In sharp contrast to the gold‐catalyzed reactions of alkynes/allenes with nucleophiles, gold‐catalyzed oxidative cross‐couplings and especially C? H/C? H cross‐coupling have been under represented. By taking advantage of the unique redox property and carbophilic π acidity of gold, this work realizes the first gold‐catalyzed direct C(sp3)? H alkynylation of 1,3‐dicarbonyl compounds with terminal alkynes under mild reaction conditions, with subsequent cyclization and in situ oxidative alkynylation. A variety of terminal alkynes including aryl, heteroaryl, alkenyl, alkynyl, alkyl, and cyclopropyl alkynes all successfully participate in the domino reaction. The protocol offers a simple and region‐defined approach to 3‐alkynyl polysubstituted furans.  相似文献   

9.
A direct asymmetric alkynylation of ketones with new chiral CCN Rh catalysts containing N‐heterocyclic carbene and oxazoline hybrid ligands is described. The catalytic reaction of fluoroalkyl‐substituted ketones, ArCOCF2X (X=F, Cl, H), with aromatic and aliphatic alkynes yielded the corresponding chiral propargyl alcohols with high enantioselectivity. Control and kinetic experiments suggested a bis(alkynyl) Rh intermediate as the active species for the C?C bond‐forming step.  相似文献   

10.
An efficient, easy to perform, one-pot reaction cascade for the synthesis of 2,5-disubstituted pyrroles from p-toluenesulfonyl protected imines and 4-nitrobut-1-yne under a combination of base and gold(III) catalysis is reported.  相似文献   

11.
Novel and efficient radical alkylation of several heterocyclic systems including pyrroles, indoles, furan and thiophenes is described using xanthate based radical chemistry. The present methodology could be used to provide rapid access to various nonsteroidal antiinflammatory drugs.  相似文献   

12.
Recently, the rhodium(III)-complex [Cp*RhCl(2)](2) 1 has provided exciting opportunities for the efficient synthesis of aromatic heterocycles based on a rhodium-catalyzed C-H bond functionalization event. In the present report, the use of complexes 1 and its dicationic analogue [Cp*Rh(MeCN)(3)][SbF(6)](2) 2 have been employed in the formation of indoles via the oxidative annulation of acetanilides with internal alkynes. The optimized reaction conditions allow for molecular oxygen to be used as the terminal oxidant in this process, and the reaction may be carried out under mild temperatures (60 °C). These conditions have resulted in an expanded compatibility of the reaction to include a range of new internal alkynes bearing synthetically useful functional groups in moderate to excellent yields. The applicability of the method is exemplified in an efficient synthesis of paullone 3, a tetracyclic indole derivative with established biological activity. A mechanistic investigation of the reaction, employing deuterium labeling experiments and kinetic analysis, has provided insight into issues of reactivity for both coupling partners as well as aided in the development of conditions for improved regioselectivity with respect to meta-substituted acetanilides. This reaction class has also been extended to include the synthesis of pyrroles. Catalyst 2 efficiently couples substituted enamides with internal alkynes at room temperature to form trisubstituted pyrroles in good to excellent yields. The high functional group compatibility of this reaction enables the elaboration of the pyrrole products into a variety of differentially substituted pyrroles.  相似文献   

13.
In sharp contrast to the gold‐catalyzed reactions of alkynes/allenes with nucleophiles, gold‐catalyzed oxidative cross‐couplings and especially C H/C H cross‐coupling have been under represented. By taking advantage of the unique redox property and carbophilic π acidity of gold, this work realizes the first gold‐catalyzed direct C(sp3) H alkynylation of 1,3‐dicarbonyl compounds with terminal alkynes under mild reaction conditions, with subsequent cyclization and in situ oxidative alkynylation. A variety of terminal alkynes including aryl, heteroaryl, alkenyl, alkynyl, alkyl, and cyclopropyl alkynes all successfully participate in the domino reaction. The protocol offers a simple and region‐defined approach to 3‐alkynyl polysubstituted furans.  相似文献   

14.
Indole synthesis by a gold(I)‐catalyzed intermolecular formal [4+2] reaction between 1,3‐diynes and pyrroles has been developed. This reaction involves the hydroarylation of 1,3‐diynes with pyrroles followed by an intramolecular hydroarylation to give the 4,7‐disubstituted indoles. This reaction can also be applied to the synthesis of carbazoles when indoles are used as the nucleophiles instead of pyrroles.  相似文献   

15.
In addition to the well-established nucleophilic alkynylation, the use of electrophilic alkynes can expand tremendously the scope of acetylene transfer reactions. The use of metal catalysis has recently led to a rebirth of this research area. Halogenoalkynes, hypervalent alkynyliodoniums, acetylene sulfones and in situ oxidized terminal acetylenes are the most often used reagents for electrophilic alkynylation. Heteroatoms such as N, O, S and P can be now efficiently alkynylated. For C-C bond formation, electrophilic acetylenes can be coupled with different organometallic reagents. Recently, the first breakthrough in direct C-H and C[double bond, length as m-dash]C bond alkynylation has also been reported. Finally, sulfonyl acetylenes are efficient for alkyne transfer on carbon-centered radicals.  相似文献   

16.
A new catalytic enantioselective synthetic method for the formation of optically active aromatic and heteroaromatic hydroxy-trifluoromethyl ethyl esters is presented. This catalytic enantioselective Friedel-Crafts reaction of trifluoromethyl pyruvate with aromatic and heteroaromatic compounds is catalyzed by a chiral bisoxazoline copper(II) complex and proceeds in good yield and with high enantiomeric excess. For a series of substituted indoles, the corresponding 3-substituted hydroxy-trifluoromethyl ethyl esters are formed in up to 93% yield and 94% ee. Pyrrole and 2-substituted pyrroles also react with trifluoromethyl pyruvate in a highly enantioselective aromatic electrophilic reaction and up to 93% ee and good yields are obtained. Furanes and thiophenes give the corresponding 2-hydroxy-trifluoromethyl ethyl esters in high enantiomeric excess; however, the yields of the products are only moderate. Various types of aromatic compounds react in this catalytic reaction with trifluoromethyl pyruvate to give the aromatic electrophilic addition product in good yield. To obtain high enantiomeric excess (> 80% ee) it is necessary that aromatic amines are protected with sterically demanding protecting groups such as benzyl or allyl. This prevents coordination of the amine nitrogen atom to the catalyst, as aromatic amines having a N,N-dimethyl group probably coordinate to the catalyst, leading to a significant reduction of the enantioselective properties of the catalyst. On the basis of the experimental results and the absolute configuration of the formed chiral center, the mechanism for the catalytic enantioselective Friedel-Crafts reaction is discussed.  相似文献   

17.
The facile and clean direct cyanating reaction of pyrroles and thiophenes has been achieved using a recyclable hypervalent iodine(III) reagent 1b by a simple solid-liquid separation of the products and the reagent.  相似文献   

18.
An experimentally simple, efficient, and inexpensive catalyst system was developed for the N-arylation of pyrroles, indoles, and imidazole with aryl and heteroaryl iodides, bromides, and chlorides by applying CuI as catalyst, N-hydroxysuccinimide (L1), N-hydroxymaleimide (L2), or N-hydroxyphthalimide (L3) as ligand, CH3ONa as base, and DMSO as solvent. A variety of functional groups are tolerated in the reaction, including those that are not compatible with Pd-catalyzed amidation methodology.  相似文献   

19.
Yanshi Zhang 《Tetrahedron》2006,62(16):3917-3927
A highly regio- and stereoselective Brønsted acid-catalyzed coupling of ynamides and aromatic heterocycles, such as pyrroles, furans, and indoles is described. This process is the equivalent of hydroarylation of ynamides, and leads to the efficient syntheses of an array of vinylheterocycles. Diels-Alder reaction between the vinylindoles and DMAD afforded carbazole derivatives in good yields.  相似文献   

20.
Abstract

Phosphorus-containing crown-ethers functionalized by heterocycle fragments have essential advantages over the usual ones. The introduction of structural units of indoles, pyrroles and indolizines to phosphorus atom of the macrocyclic chain is capable to change lipophilic, complexing, biological and other properties of the initial crown-ethers. For synthesis of such compounds we have used dihalidophosphines obtained by direct substitution of the electron-rich aromatic compounds with phosphorus (III) halides. As a result, series of highly efficient macrocyclic compounds of a nowel type have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号