首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated. The text was submitted by the authors in English.  相似文献   

3.
4.
We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.  相似文献   

5.
6.
We propose a technique for estimating gene expression values for duplicated data on cDNA microarrays. In the scatter plots, the distribution is constructed from a mixture of normal two-dimensional distributions, which represent fluctuations in gene expression values due to noise. An expectation-maximization (EM) algorithm is used for estimating the modeling parameters. The probability that duplicated data is shifted by noise is calculated using Bayesian estimation. Six data sets of rice cDNA microarray assays were used to test the proposed technique. Genes in the data sets were subjected to clustering based on probability of true value. Clustering successfully identified candidate genes regulated by circadian rhythms in rice.  相似文献   

7.
Gene network associated with Alzheimer’s disease (AD) is constructed from multiple data sources by considering gene co-expression and other factors. The AD gene network is divided into modules by Cluster one, Markov Clustering (MCL), Community Clustering (Glay) and Molecular Complex Detection (MCODE). Then these division methods are evaluated by network structure entropy, and optimal division method, MCODE. Through functional enrichment analysis, the functional module is identified. Furthermore, we use network topology properties to predict essential genes. In addition, the logical regression algorithm under Bayesian framework is used to predict essential genes of AD. Based on network pharmacology, four kinds of AD’s herb-active compounds-active compound targets network and AD common core network are visualized, then the better herbs and herb compounds of AD are selected through enrichment analysis.  相似文献   

8.
Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.  相似文献   

9.
L. Diambra 《Physica A》2011,390(11):2198-2207
In the postgenome era many efforts have been dedicated to systematically elucidate the complex web of interacting genes and proteins. These efforts include experimental and computational methods. Microarray technology offers an opportunity for monitoring gene expression level at the genome scale. By recourse to information theory, this study proposes a mathematical approach to reconstruct gene regulatory networks at a coarse-grain level from high throughput gene expression data. The method provides the a posteriori probability that a given gene regulates positively, negatively or does not regulate each one of the network genes. This approach also allows the introduction of prior knowledge and the quantification of the information gain from experimental data used in the inference procedure. This information gain can be used to choose those genes that will be perturbed in subsequent experiments in order to refine our knowledge about the architecture of an underlying gene regulatory network. The performance of the proposed approach has been studied by in numero experiments. Our results suggest that the approach is suitable for focusing on size-limited problems, such as recovering a small subnetwork of interest by performing perturbation over selected genes.  相似文献   

10.
11.
Large-scale genomic technologies has opened new possibilities to infer gene regulatory networks from time series data. Here, we investigate the relationship between the dynamic information of gene expression in time series and the underlying network structure. First, our results show that the distribution of gene expression fluctuations (i.e., standard deviation) follows a power-law. This finding indicates that while most genes exhibit a relatively low variation in expression level, a few genes are revealed as highly variable genes. Second, we propose a stochastic model that explains the emergence of this power-law behavior. The model derives a relationship that connects the standard deviation (variance) of each node to its degree. In particular, it allows us to identify a global property of the underlying genetic regulatory network, such as the degree exponent, by only computing dynamic information. This result not only offers an interesting link to explore the topology of real systems without knowing the real structure but also supports earlier findings showing that gene networks may follow a scale-free distribution.  相似文献   

12.
Recently, inferring gene regulatory network from large-scale gene expression data has been considered as an important effort to understand the life system in whole. In this paper, for the purpose of getting further information about lung cancer, a gene regulatory network of lung cancer is reconstructed from gene expression data. In this network, vertices represent genes and edges between any two vertices represent their co-regulatory relationships. It is found that this network has some characteristics which are shared by most cellular networks of health lives, such as power-law, small-world behaviors. On the other hand, it also presents some features which are obviously different from other networks, such as assortative mixing. In the last section of this paper, the significance of these findings in the context of biological processes of lung cancer is discussed.  相似文献   

13.
14.
Selection of biologically relevant genes from high-dimensional expression data is a key research problem in gene expression genomics. Most of the available gene selection methods are either based on relevancy or redundancy measure, which are usually adjudged through post selection classification accuracy. Through these methods the ranking of genes was conducted on a single high-dimensional expression data, which led to the selection of spuriously associated and redundant genes. Hence, we developed a statistical approach through combining a support vector machine with Maximum Relevance and Minimum Redundancy under a sound statistical setup for the selection of biologically relevant genes. Here, the genes were selected through statistical significance values and computed using a nonparametric test statistic under a bootstrap-based subject sampling model. Further, a systematic and rigorous evaluation of the proposed approach with nine existing competitive methods was carried on six different real crop gene expression datasets. This performance analysis was carried out under three comparison settings, i.e., subject classification, biological relevant criteria based on quantitative trait loci and gene ontology. Our analytical results showed that the proposed approach selects genes which are more biologically relevant as compared to the existing methods. Moreover, the proposed approach was also found to be better with respect to the competitive existing methods. The proposed statistical approach provides a framework for combining filter and wrapper methods of gene selection.  相似文献   

15.
BACKGROUND: Polymorphisms in several genes (NOD2, MDR1, SLC22A4) have been associated with susceptibility to Crohn's disease. Identification of the remaining Crohn's susceptibility genes is essential for the development of disease-specific targets for immunotherapy. Using gene expression analysis, we identified a differentially expressed gene on 5q33, the colony stimulating factor 1 receptor (CSF1R) gene, and hypothesized that it is a Crohn's susceptibility gene. The CSF1R gene is involved in monocyte to macrophage differentiation and in innate immunity. METHODS: Patients provided informed consent prior to entry into the study as approved by the Institutional Review Board at LSU Health Sciences Center. We performed forward and reverse sequencing of genomic DNA from 111 unrelated patients with Crohn's disease and 108 controls. We also stained paraffin-embedded, ileal and colonic tissue sections from patients with Crohn's disease and controls with a polyclonal antibody raised against the human CSF1R protein. RESULTS: A single nucleotide polymorphism (A2033T) near a Runx1 binding site in the eleventh intron of the colony stimulating factor 1 receptor was identified. The T allele of this single nucleotide polymorphism occurred in 27% of patients with Crohn's disease but in only 13% of controls (X2 = 6.74, p < 0.01, odds ratio (O.R.) = 2.49, 1.23 < O.R. < 5.01). Using immunohistochemistry, positive staining with a polyclonal antibody to CSF1R was observed in the superficial epithelium of ileal and colonic tissue sections. CONCLUSIONS: We conclude that the colony stimulating factor receptor 1 gene may be a susceptibility gene for Crohn's disease.  相似文献   

16.
The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or combinations of drugs that already exist in clinics. In this study, we developed a computational approach that integrates copy number alteration, gene expression, and a protein interaction network of 73 basal breast cancer samples. 2509 prognostic genes harboring a copy number alteration were identified using survival analysis, and a protein–protein interaction network considering the direct interactions was created. Each patient was described by a specific combination of seven altered hub proteins that fully characterize the 73 basal breast cancer patients. We suggested the optimal combination therapy for each patient considering drug–protein interactions. Our approach is able to confirm well-known cancer related genes and suggest novel potential drug target genes. In conclusion, we presented a new computational approach in breast cancer to deal with the intra-tumor heterogeneity towards personalized cancer therapy.  相似文献   

17.
18.
With the advent of single-cell RNA-sequencing (scRNA-seq), it is possible to measure the expression dynamics of genes at the single-cell level. Through scRNA-seq, a huge amount of expression data for several thousand(s) of genes over million(s) of cells are generated in a single experiment. Differential expression analysis is the primary downstream analysis of such data to identify gene markers for cell type detection and also provide inputs to other secondary analyses. Many statistical approaches for differential expression analysis have been reported in the literature. Therefore, we critically discuss the underlying statistical principles of the approaches and distinctly divide them into six major classes, i.e., generalized linear, generalized additive, Hurdle, mixture models, two-class parametric, and non-parametric approaches. We also succinctly discuss the limitations that are specific to each class of approaches, and how they are addressed by other subsequent classes of approach. A number of challenges are identified in this study that must be addressed to develop the next class of innovative approaches. Furthermore, we also emphasize the methodological challenges involved in differential expression analysis of scRNA-seq data that researchers must address to draw maximum benefit from this recent single-cell technology. This study will serve as a guide to genome researchers and experimental biologists to objectively select options for their analysis.  相似文献   

19.
20.
Methods for time series prediction and classification of gene regulatory networks (GRNs) from gene expression data have been treated separately so far. The recent emergence of attention-based recurrent neural network (RNN) models boosted the interpretability of RNN parameters, making them appealing for the understanding of gene interactions. In this work, we generated synthetic time series gene expression data from a range of archetypal GRNs and we relied on a dual attention RNN to predict the gene temporal dynamics. We show that the prediction is extremely accurate for GRNs with different architectures. Next, we focused on the attention mechanism of the RNN and, using tools from graph theory, we found that its graph properties allow one to hierarchically distinguish different architectures of the GRN. We show that the GRN responded differently to the addition of noise in the prediction by the RNN and we related the noise response to the analysis of the attention mechanism. In conclusion, this work provides a way to understand and exploit the attention mechanism of RNNs and it paves the way to RNN-based methods for time series prediction and inference of GRNs from gene expression data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号