首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectrometric and theoretical tools have been employed in this study in order to elucidate the structures of DTPA (diethylenetriaminepentaacetic acid) complexed to copper and lead. Mass spectrometry allowed determining the 1:1 stoichiometry of metal:ligand, while infrared spectroscopy demonstrated that both N and O are sites for complexation. 13C NMR analysis showed the existence of free and complexed carboxyl groups, due to a straight singlet at 180.7 ppm (free carboxylic 13C) and to a broad signal at 179.3 ppm (complexed carboxylic 13C, 2 J Pb…O=C). A distorted NMR signal were observed for the Cu–DTPA carboxyl group, due to the Cu2+ paramagnetism. Based on the spectrometric evidences for the metal–DTPA structures, DFT optimizations were carried out and an octahedral-like arrangement for the Cu complex and a “shell-like” arrangement for the Pb complex, both hexa-coordinated, were then proposed for the structures of the titled compounds.
Ruy CarvalhoEmail:
  相似文献   

2.
A three-component reaction of dimethyltin dibromide with imidazo[1,2-a]pyridine, pyridine derivatives, or isoquinoline and allyl bromide in refluxing ethanol affords the ionic complex, bis(1-allylcycloiminium) dimethyltetrabromostannate (II). The reaction involves N-allylation of cycloimine accompanied by the coordination of two bromide ions with the tin atom of dimethyltin dibromide. The complexes have been characterized by infrared and 1H NMR, 13C NMR, and 119Sn NMR studies. The X-ray crystal structure analysis of a complex reveals the tin atom to be hexacoordinated and the dimethyltetrabromostannate (II) anion having octahedral geometry. Some of the complexes tested for their insecticidal activity are found to exhibit strong activity against Tribolium castaneum insect with LC50 ranging from 0.4 to 0.8 ppm.  相似文献   

3.
Thermal dehydration process of PMAA was investigated by solid‐state 13C NMR. For heat‐treated PMAA at 150°C, at which the dehydration goes very slowly, we observed three 13C peaks at 172, 178, and 187 ppm in the carboxyl group region. The peak at 172 ppm is due to the intramolecular cyclic anhydrides by comparing the reported value of 13C chemical shift. The peaks at 178 and 187 ppm were assigned to regularly aligned free carboxylic acids and intermolecular acid dimers, respectively, from the 2D‐exchange 13C NMR spectra, 13C chemical shift values and IR spectra. We concluded that by heat‐treatment the rearrangement of intermolecular hydrogen bonding of the carboxylic acids in PMAA occurs firstly to form the regularly aligned acid dimers, and the dimers dissociated to be the regularly aligned free carboxylic acids at high temperatures. The adjacent free carboxyl acids dehydrate with each other, resulting in the formation of intramolecular anhydrides. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2007–2012, 1999  相似文献   

4.
Two diorganotin(IV) complexes of the general formula R2Sn[Ph(O)CCH-C(Me)N-NC(O)Ph] (R=Ph, 1; R=Me, 2) have been synthesised from the corresponding diorganotin(IV) dichloride and the ligand 4-phenyl-2,4-butanedionebenzoylhydrazone(2−) (H2L), derived from benzoyl acetone and benzoyl hydrazide in methanol at room temperature in presence of triethylamine. The syntheses were performed under very mild conditions, at room temperature and without exclusion of air or moisture from the reaction vessel. Previously, rigorous conditions have been considered necessary for these species. The two compounds have been characterised by elemental analysis, IR and 1H, 13C, 15N, 119Sn NMR spectra, and their structures have been confirmed single crystal X-ray structure analysis. The central tin atom of both complexes adopts a distorted trigonal bipyramidal coordination with two ligand oxygen atoms in axial positions, the nitrogen atom of the ligand and two organic groups on tin occupying equatorial sites. 2 has crystallised with two crystallographically independent molecules in the asymmetric unit. The δ(119Sn) values for the complexes 1 and 2 are −151.5 and −146.8 ppm, respectively, thus indicating penta-coordinated tin centres.  相似文献   

5.
Both the conformation and flexibility of four mixed oxathia crown ethers and their Ag(I) and Pd(II) complexes were studied by (1)H NMR (delta, J, NOE, T(1)), (13)C NMR, dynamic (1)H NMR spectroscopy and molecular modelling. The stoichiometry and stability constants of the complexes were determined from corresponding Job's plots in the case of Ag(I) complexes as the interchange between free and complexed states was fast on the NMR timescale; interchange for the Pd(II) complexes was sufficiently slow such that distinct sub-spectra were observable for the free and complexed states. In all cases where complexation was observed, 1 : 1 complexes were formed. Global minima structures determined from the modelling studies were analysed with respect to the barriers to ring interconversion, the flexibility of the species in solution and the preferred complexation of Ag(I) and Pd(II) to the sulfur atoms of the crown ethers.  相似文献   

6.
New complexes of lanthanide nitrates with N, N-diethylantipyrine-4-carboxamide (DEAP), with the general formulae [Ln2(DEAP)3] [NO3]6 (where Ln = La, Pr, Nd, Sm, Tb, Ho, Er, Yb and Y) have been isolated and characterized by chemical analysis and various physical methods such as electrolytic conductance, IR and13C NMR spectral data. Electrolytic conductance values and infrared spectral studies indicate that the nitrate groups are coordinated. Infrared and13C NMR spectral analysis show that the ligand DEAP is coordinated to the tripositive metal ion through the diethylcarboxamide carbonyl and antipyrine carbonyl oxygens in a bidentate fashion.  相似文献   

7.
By using the closed-shell SCF-MO method with the CNDO type approximation for all valence electron systems, the electronic structures of some Ag+-olefin complexes are investigated. The calculated values of -H increase with the increasing number of methyl groups on the double bond and this trend agrees with the experimental result. Also calculation reproduces many experimental results, such as the infrared, Raman, and13C NMR spectra. These experimental results are discussed on the basis of the calculated electronic structures of Ag+-olefin complexes.  相似文献   

8.
The formation of Pt(eta(5)-C(5)Me(5))(CO){C(O)NR(2)} (R=Me, Et) complexes was established by spectroscopic analysis. The infrared spectra of these complexes showed a sharp absorption due to the presence of coordinated carbonyl group in the region 2017-2013cm(-1). The N,N-dialkylcarbamoyl ligands showed a characteristic CO stretching absorption in the range 1609-1616cm(-1). The proton NMR spectra of these complexes revealed the expected singlet arising from five equivalent methyl groups on the cyclopentadienyl ring with satellites due to coupling to (195)Pt. The N-methyl and N-ethyl protons exhibited very broad resonances due to restricted rotation about the N-C bond at room temperature. On cooling to -30 degrees C, the N,N-dimethyl protons for complex Pt(eta(5)-C(5)Me(5))(CO){C(O)NMe(2)} showed two sharp singlets at delta 2.86 and 3.09ppm as expected for the static structure. For the N,N-diethyl derivative, Pt(eta(5)-C(5)Me(5))(CO){C(O)NEt(2)}, the methyl protons exhibited only a single triplet at delta 1.06ppm at -10 degrees C due to coupling with the methylene protons. This single resonance arises through accidental overlap as the methylene protons of the ethyl groups are inequivalent at this temperature and each exhibited a quartet at delta 3.33 and 3.70ppm due to coupling with the methyl protons. The singlet resonances for the methyl and ring carbons of the eta(5)-C(5)Me(5) group found in (13)C{(1)H} NMR spectra are illustrative of the chemical equivalence of all the carbon atoms caused by free rotation of the ring in these complexes. The signals attributable to the carbonyl and carbamoyl carbon atom resonances are found downfield as two singlets each with a large coupling constant to platinum. The platinum coupling constants of the downfield resonances could not be identified for Pt(eta(5)-C(5)Me(5))(CO){C(O)NMe(2)} due to presence of impurities.  相似文献   

9.
Cadmium(II) complexes of Imidazolidine-2-selenone (ImSe) and its derivatives have been prepared with the general formula Cd(RImSe)2Cl2 (where R=Me, Et, Pr, etc.). These complexes are characterized by elemental analysis, IR and NMR (1H, 13C, 77Se and 113Cd) spectroscopy. An upfield shift in C=Se resonance of selenones in 13C NMR and in 77Se and high-frequency shifts in N-H resonances in 1H are consistent with the selenium coordination to Cd(II). The 77Se nucleus in Cd(ImSe)2Cl2 is shielded by 38 ppm on coordination, relative to the free ligand. The principal components of the 77Se, 113Cd and 13C shielding tensors for the complexes were determined from solid-state NMR data. Large selenium chemical shift anisotropies were observed for these complexes.  相似文献   

10.
Mercury cyanide complexes of alkyldiamines (16), [Hg(L)(CN)2] (where L?=?en (1,2-diaminoethane), pn (1,3-diaminopropane), N-Me-en, N, N′-Me2-en, N, N′-Et2-en, and N, N′-ipr2-en), have been synthesized and characterized by elemental analysis, IR, 13C, and 15N solution NMR in DMSO-d6, as well as 13C, 15N, and 199Hg solid-state NMR spectroscopy. Complexes 1 and 2 have been studied computationally, built and optimized by GAUSSIAN03 using DFT at B3LYP level with LanL2DZ basis set. Binding modes of en and bn (where bn?=?1,4-diaminobutane) toward Hg(CN)2 are completely different. Complexes with en and pn show chelating binding to Hg(II), while bn behaves as a bridging ligand to form a polymeric structure, [Hg(CN)2-bn] [B.A. Al-Maythalony, M. Fettouhi, M.I.M. Wazeer, A.A. Isab. Inorg. Chem. Commun., 12, 540 (2009).]. The solution 13C NMR of the complexes demonstrates a slight shift of the ?C≡N (0.9 to 2?ppm) and ?C–NH2 (0.25 to 6?ppm) carbon resonances, while the other resonances are relatively unaffected. 15N labeling studies have shown involvement of alkyldiamine ligands in coordination to the metal. The principal components of the 13C, 15N, and 199Hg shielding tensors have been determined from solid-state NMR data. Antimicrobial activity studies show that the complexes exhibit higher antibacterial activities toward various microorganisms than Hg(CN)2.  相似文献   

11.
(Z)-4-(4-Methoxyphenoxy)-4-oxobut-2-enoic acid and its solid rare earth complexes LnL3.2H2O (Ln=La, Eu, Tb) were synthesized and characterized by means of MS, elemental analysis, FTIR, 13C NMR and TG-DTA. The IR and 13C NMR results show that the carboxylic groups in the complexes coordinated to the rare earth ions in the form of a bidentate ligand, but the ester carboxylic groups have not taken part in the coordination. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were also studied. The strong luminescence emitting peaks at 616nm for Eu(III) and 547nm for Tb(III) can be observed, which could be attributed to the ligand has an enhanced effect to the luminescence intensity of the Eu and Tb.  相似文献   

12.
1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena). The influence of deviations from planarity, concerning either MN2Cl2 chromophores or azine ring systems, revealed by the known X-ray structures of [Pd(bquin)Cl2] and [Pt(bquin)Cl2], is discussed in respect to 1H NMR spectra. 15N coordination shifts (Delta15Ncoord=delta15Ncomplex-delta15Nligand) of ca. 78-100 ppm (to lower frequency) are attributed mainly to the decrease of the absolute value of paramagnetic contribution in the relevant 15N shielding constants, this phenomenon being noticeably dependent on the type of a platinide metal and coordination sphere geometry. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) replacement but decreased by ca. 15 ppm following trans-->cis transition. Experimental 1H, 13C, 15N NMR chemical shifts are compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in CHCl3 or DMF solution.  相似文献   

13.
The crystal structure of beta-alanine-oxalic acid (1:1) hemihydrate complex has been reinvestigated by X-ray diffraction method at 293 K. Formation of monoclinic crystal system belonging to C2/c space group and consisting of semi-oxalate chains, diprotonated beta-alanine dimers and water molecules bonded to both these units is confirmed. New results are obtained for distances in the carboxylic groups and hydrogen bonds. These structural observations are used for protonation degree monitoring on the carboxylic oxygen atoms. They are in accordance with our vibrational study. The 13C NMR spectra provide insights into the solid structure of this complex, character of its hydrogen bonds and the beta-alanine protonation.  相似文献   

14.
Various (arene)tricarbonylchromium complexes were synthesized within the confines of NaX zeolite and studied with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and carbon-13 magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy. In each case, the surface complex Cr(CO)3(Oz)3 (Oz represents a framework oxygen of the NaX zeolite) was prepared before a particular arene was added. The arenes benzene, toluene, mesitylene, anisole, and aniline all produce hexahapto pi-complexes physisorbed within the zeolite supercage. DRIFTS spectra show three bands in the carbonyl region indicating less than C3v symmetry. The NMR spectra have narrow carbonyl bands near 240 ppm which indicate rapidly reorienting complexes within the zeolite. The (eta 6-benzene)tricarbonylchromium complex is physisorbed at two sites as indicated both by the DRIFTS spectra and by two carbonyl resonances at 242.5 and 239.1 ppm at 300 K. Variable-temperature MAS NMR shows these two resonances coalescing near 360 K with an activation energy of 48 +/- 6 kJ/mol. When the temperature is decreased to 205 K, the high-frequency carbonyl resonance disappears. The 239 ppm resonance is still narrow at 134 K while MAS sidebands show that the resonance from physisorbed benzene is ca. 200 ppm wide. The complex prepared with pyridine gave a broad resonance as indicated by the spinning sidebands in the MAS NMR spectra. The pyridine complex was identified as Cr(CO)3(C5H5N)3.  相似文献   

15.
The (+) and ( ? ) enantiomers for a cryptophane-7-bond-linker-benzenesulfonamide biosensor (C7B) were synthesised and their chirality was confirmed by electronic circular dichroism spectroscopy. Biosensor binding to carbonic anhydrase II (CAII) was characterised for both enantiomers by hyperpolarised (HP) 129Xe NMR spectroscopy. Our previous study of the racemic ( ± ) C7B biosensor–CAII complex [Chambers, J.M.; Hill, P.A.; Aaron, J.A.; Han, Z.H.; Christianson, D.W.; Kuzma, N.N.; Dmochowski, I.J. J. Am. Chem. Soc.2009, 131, 563–569] identified two ‘bound’ 129Xe@C7B peaks by HP 129Xe NMR (at 71 and 67 ppm, relative to ‘free’ biosensor at 64 ppm), which led to the initial hypothesis that (+) and ( ? ) enantiomers produce diastereomeric peaks when coordinated to Zn2+ at the chiral CAII active site. Unexpectedly, the single enantiomers complexed with CAII also identified two ‘bound’ 129Xe@C7B peaks: (+) 72, 68 ppm and ( ? ) 68, 67 ppm. These results are consistent with X-ray crystallographic evidence for benzenesulfonamide inhibitors occupying a second site near the CAII surface. As illustrated by our studies of this model protein–ligand interaction, HP 129Xe NMR spectroscopy can be useful for identifying supramolecular assemblies in solution.  相似文献   

16.
Three new transition metal complexes [Zn(bipyrtds)I2]( 1 ), [Cd(bipyrtds)I2] ( 2 ) and [Hg(pipdtc)I]( 3 ) (where bipyrtds = bipyrrolidine thiuamdisulfide and pipdtc = piperidinecarbodithioate) were prepared by the reaction of the corresponding biscarbodithioates with iodine and were characterized by elemental analysis, IR and NMR spectra. The structures of all the three complexes were determined by single crystal X‐ray crystallography. Compounds 1 and 2 contain four coordinated metal atoms and both ZnII and CdII complexes are isostrucutral. Interestingly, complex 3 was found to contain effectively four coordinated mercury atom as a dimer with a relatively long Hg‐S (3.084Å) bond. The IR studies are in keeping with the observed thioureide distances. 1H NMR spectra of 1 and 2 show clear differences in environments of α‐ and β‐CH2 protons. However, in 1 a broad signal was observed at 4.02 ppm for α‐protons and a multiplet at 2.10 for β‐protons. For 2 , two triplets appeared at 4.26 and 4.03 ppm for α‐protons and two quintets appeared in the range of 2.18 and 2.28 ppm for β‐protons. Complex 3 gave three sets of signals. Variation of stereochemical environment with respect to α and β protons of the rings is very clearly observed in the NMR spectra.  相似文献   

17.
反式环己烷羧酸衍生物的合成   总被引:2,自引:0,他引:2  
唐洪  徐寿颐 《应用化学》1999,16(2):85-83
低档液晶显示中所用的液晶材料,如联苯氰类、酯类等,具有高的粘度,低的清亮点及低的光化学、化学稳定性等缺点.随着液晶显示技术的发展,对高档液晶材料的要求越来越迫切.为了降低液晶材料的粘度指数,改造液晶分子的方法之一是用环己烷环代替分子中的苯环[1].因...  相似文献   

18.
We have carried out a combined theoretical-experimental study of the structures and energies of ZrCl(4)-aldehyde complexes using (13)C NMR spectroscopy and a DFT (B3LYP) computational approach. The computational investigation has demonstrated the existence of different types of complexes: a 1:1 complex (H(2)CO-ZrCl(4)), various 2:1 complexes ((H(2)CO)(2)-ZrCl(4)), and several dimeric species. The analysis of the energies involved in the formation of the various complexes has indicated that the dimeric species should correspond to the only adduct observed in the (13)C NMR spectra (carbonyl resonance at 226.96 ppm) when a 1:1 ZrCl(4)/aldehyde molar ratio is used, while the 2:1 complex should be responsible for the signal at 224.30 ppm that is recorded when this molar ratio is 1:2.  相似文献   

19.
A direct, low-temperature hydrogen-1, carbon-13, and nitrogen-15 nuclear magnetic resonance study of lutetium(III)-isothiocyanate complex formation in aqueous solvent mixtures has been completed. At –100°C to –120°C in water-acetone-Freon mixtures, ligand exchange is slowed sufficiently to permit the observation of separate1H,13C, and15N NMR signals for coordinated and free water and isothiocyanate ions. In the13C and15N spectra of NCS, resonance signals for five complexes are observed over the range of concentrations studied. The13C chemical shifts of complexed NCS varied from –0.5 ppm to –3 ppm from that of free anion. For the same complexes, the15N chemical shifts from free anion were about –11 ppm to –15 ppm. The magnitude and sign of the15N chemical shifts identified the nitrogen atom as the binding site in NCS. The concentration dependence of the13C and15N signal areas, and estimates of the fraction of anion bound at each NCS:Lu3+ mole ratio, were consistent with the formation of [(H2O)5Lu(NCS)]2+ through [(H2O)Lu(NCS)5]2–. Although proton and/or ligand exchange and the resulting bulk-coordinated signal overlap prevented accurate hydration number measurements, a good qualitative correlation of the water1H NMR spectral results with those of13C and15N was possible.  相似文献   

20.
This study reports the synthesis and characterization of novel ruthenium (II) complexes with the polydentate dipeptide, L-carnosine (2-[(3-aminopropanoyl)amino]-3-(1H-imidazol-5-yl)propanoic acid). Mixed-ligand complexes with the general composition [ML(p)(Cl)(q)(H?O)(r)]·xH?O (M = Ru(II); L = L-carnosine; p = 3 - q; r = 0-1; and x = 1-3) were prepared by refluxing aqueous solutions of the ligand with equimolar amounts of ruthenium chloride (black-alpha form) at 60 °C for 36 h. Physical properties of the complexes were characterized by elemental analysis, DSC/TGA, and cyclic voltammetry. The molecular structures of the complexes were elucidated using UV-Vis, ATR-IR, and heteronuclear NMR spectroscopy, then confirmed by density function theory (DFT) calculations at the B3LYP/LANL2DZ level. Two-dimensional NMR experiments (1H COSY, 13C gHMBC, and 1?N gHMBC) were also conducted for the assignment of chemical shifts and calculation of relative coordination-induced shifts (RCIS) by the complex formed. According to our results, the most probable coordination geometries of ruthenium in these compounds involve nitrogen (N1) from the imidazole ring and an oxygen atom from the carboxylic acid group of the ligand as donor atoms. Additional thermogravimetric and electrochemical data suggest that while the tetrahedral-monomer or octahedral-dimer are both possible structures of the formed complexes, the metal in either structure occurs in the 2? oxidation state. Resulting RCIS values indicate that the amide-carbonyl, and the amino-terminus of the dipeptide are not involved in chelation and these observations correlate well with theoretical shift predictions by DFT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号