首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
The purpose of this study was to develop an efficient synthetic method for labeling d-Glucosamine with indium-111 (111In), and to investigate the imaging properties of the resulting radiotracer in MDA-MB-468 xenograft models using single-photon emission computed tomography (SPECT). The precursor compound, 2-(4-Isothiocyanato benzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-deoxyglucosone (DOTA-DG), was synthesized from 2-d-Glucosamine. DOTA-DG was labeled with 111In within 20 min. The labeling efficiency and radiochemical purity of 111In-DOTA-DG were >95 and >96 % as determined by radio-HPLC. SPECT imaging studies were performed using nude mice bearing MDA-MB-468 mammary tumors after intravenous injection of at a dose of 1.11 MBq (0.1 mL) 111In-DOTA-DG. Tumors were clearly delineated by SPECT imaging at 120 min after injection.  相似文献   

2.
The aim of the present study was to label EGCG with 125I and to determine its radiopharmaceutical potential in mice. EGCG was labeled with 125I using the iodogen method. The labeling yield and the radiochemical purity of 125I–EGCG were determined by radio thin-layer chromatography (RTLC). The Labeling yield was approximately 89.4 %. The radiochemical purity was approximately 96.4 %. The biodistribution studies of the labeled compound (specific activity; 0.47 TBq/μg) were performed in male Kunming mice. The uptakes of 125I–EGCG in some organs were determined at different time after injection to the mice. The radioactivity in each organ was counted and the percentage of injected activity per gram of tissue weight (%ID/g) for each organ and blood was calculated. Incorporation of radioactivity in the various tissue/organ was confirmed by microautoradiography. 125I–EGCG uptake in the stomach and salivary gland was higher than other organ/tissue. The black silver grains was concentrated in the nucleus, cytoplasm, intercellular substance and capillaries of that various organs, and its unevenly distributed. Thus, 125I–EGCG may be radiopharmaceutical for the imaging of the stomach and salivary gland.  相似文献   

3.
Recently ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs) have been widely used for medical applications. One of their important applications is using these particles as MRI contrast agent. While various research works have been done about MRI application of USPIOs, there is limited research about their uptakes in various organs. The aim of this study was to evaluate the biodistribution of dextran coated iron oxide NPs labelled with 99mTc in various organs via intravenous injection in Balb/c mice. The magnetite NPs were dispersed in phosphate buffered saline and SnCl2 which was used as a reduction reagent. Subsequently, the radioisotope 99mTc was mixed directly into the reaction solution. The labeling efficiency of USPIOs labeled with 99mTc, was above 99 %. Sixty mice were sacrificed at 12 different time points (From 1 min to 48 h post injections; five mice at each time). The percentage of injected dose per gram of each organ was measured by direct counting for 19 harvested organs of the mice. The biodistribution of 99mTc-USPIO in Balb/c mice showed dramatic uptake in reticuloendothelial system. Accordingly, about 75 percent of injected dose was found in spleen and liver at 15 min post injection. More than 24 % of the NPs remain in liver after 48 h post-injection and their clearance is so fast in other organs. The results suggest that USPIOs as characterized in our study can be potentially used as contrast agent in MR Imaging, distributing reticuloendothelial system specially spleen and liver.  相似文献   

4.
An adopted method for the preparation of high radiochemical purity 99mTc-ursodeoxycholic acid (UDCA) was conducted with a high radiochemical yield up to 97.5 %. The reaction proceeds well using 2 mg UDCA, 50 μg tin chloride in solution of pH 8 at room temperature for 30 min. The radiochemical yield was up to 97.5 % as pure as 99mTc-UDCA. Different chromatographic techniques (paper chromatography and electrophoresis) were used to evaluate the radiochemical yield and purity of the labeled product. Biodistribution studies were carried out in Albino Swiss mice at different time intervals after administration of 99mTc-UDCA. The uptake of 99mTc-UDCA in the liver gave the chance to diagnose it. The results indicate that the labeled compound cleared from the systematic circulation within 2 h after administration and majority of organs showed significant decrease in uptake of 99mTc-UDCA. Finally, the liver uptake was high and the results indicate the possibility of using 99mTc-UDCA for hepatobiliary imaging.  相似文献   

5.
Labeling of acetaminophen with I-131 and biodistribution in rats   总被引:1,自引:0,他引:1  
The aim of the present study was to label acetaminophen (APAP) with I-131 and to determine its radiopharmaceutical potential in rats. Acetaminophen was labeled with I-131 using the iodogen method. The radiochemical purity of (131)I-APAP was determined by RTLC and paper electrophoresis. The labeling yield was 94 +/- 4%. The biodistribution studies of the labeled compound (specific activity; 56.60 GBq/mmol) were performed in male Albino Wistar rats. The uptake of (131)I-APAP in some organs were determined at different time after injection to the rats. The radioactivity in each organ was counted and the percentage of injected activity per gram of tissue weight (%ID/g) for each organ and blood was calculated. (131)I-APAP uptake in the lung, liver, kidneys, pancreas, blood, stomach and some brain region, were observed. Thus, (131)I-APAP may be radiopharmaceutical for the imaging of the brain.  相似文献   

6.
Phytochlorin [21H, 23H-Porphine-7-propanoicacid, 3-carboxy-5-(carboxymethyl)13-ethenyl-18-ethyl-7,8-dihydro-2,8,12,17-tetramethyl-,(7S,8S)] was labeled with 99mTc and the factors affecting the labeling yield of 99mTc-phytochlorin complex were studied in details. At pH 10, 99mTc-phytochlorin complex was obtained with a high radiochemical yield of 98.4 ± 0.6 % by adding 99mTc to 100 mg phytochlorin in the presence of 75 μg SnCl2·2H2O after 30 min reaction time. The molecular modeling study showed that the structure of 99mTc-phytochlorin complex presents nearly linear HO–Tc–OH unit with an angle of 179.27° and a coplanar Tc(N1N2N3N4) unit. Biodistribution of 99mTc-phytochlorin complex in tumor bearing mice showed high T/NT ratio (T/NT = 3.65 at 90 min post injection). This preclinical study showed that 99mTc-phytochlorin complex is a potential selective radiotracer for solid tumor imaging and afford it as a new radiopharmaceutical suitable to proceed through the clinical trials for tumor imaging.  相似文献   

7.
Polyamines are essential for the growth and survival of all cells with biosynthesis and transportation of polyamines being very active in tumors. With the aim of developing a new tumor imaging agent, the endogenous polyamine, spermine was labeled with 99mTc, and its characters were also evaluated via in vitro and in vivo studies. 99mTc-labeled spermine probe (99mTc-spermine) was synthesized by the direct pretinning procedure and the labeling procedure was optimized with regard to the pH, reaction time, amounts of spermine and SnCl2. The stability of the 99mTc-spermine and its capacity to accumulate into 4T1 tumor cells were also evaluated. Biodistribution of 99mTc-spermine was studied in 4T1 tumor-bearing mice. In the optimal conditions, the whole radiosynthesis was accomplished within 10 min with a decay-corrected yield of 96.5 ± 1.3 % and radiochemical purity of >95 %.99mTc-spermine was stable at both 37 and 4 °C for at least 6 h. In vitro tests revealed that the ability of 99mTc-spermine to penetrate in 4T1 tumour cells and an excess of spermine blocked the accumulation of the compound in the models. Biodistribution studies showed a high tumor uptake peaked at 30 min post-injection with 1.82 ± 0.19 % ID%/g. The tumor to muscle uptake ratios of the probe were 3.60 ± 0.51, 4.48 ± 0.29, 4.82 ± 0.18, 5.64 ± 0.10, respectively at 30 min, 1, 2 and 4 h postinjection. Block studies indicated that 99mTc-spermine had specific binding of tumor via polyamine transport systems. 99mTc-spermine is a promising radiopharmaceutical in tumor imaging. Further studies are required to determine the usability of 99mTc–spermine for diagnosis purposes.  相似文献   

8.
A novel dioxime derivative (2E,2′E,3E,3′E)-3,3′-(pyrimidine-4,5-diylbis(azanylylidene))bis(butan-2-one)dioxime was synthesized with a yield of 65%. IR, elemental analysis, mass spectroscopy and 1H-NMR were used to characterize the structure of the synthesized compound. 99mTc-dioxime was radio-synthesized with a high radiochemical yield of 97.8 ± 0.5% and in vitro stability of 6 h under the optimum conditions. The preclinical evaluation of 99mTc-dioxime in solid tumor-bearing mice showed high accumulation in solid tumor cells with a high Target/Non-Target ratio of 5.14 at 30 min post-injection. This study suggests that 99mTc-dioxime derivative is a promising candidate as a new 99mTc-based tumor-imaging agent after further preclinical studies.  相似文献   

9.
Bacterial infection poses life-threatening challenge to humanity and stimulates to the researchers for developing better diagnostic and therapeutic agents complying with existing theranostic techniques. Nuclear medicine technique helps to visualize hard-to-diagnose deep-seated bacterial infections using radionuclide-labeled tracer agents. Metronidazole is an antiprotozoal antibiotic that serves as a preeminent anaerobic chemotherapeutic agent. The aim of this study was to develop technetium-99m-labeled metronidazole radiotracer for the detection of deep-seated bacterial infections. Radiosynthesis of 99mTc-metronidazole was carried by reacting reduced technetium-99m and metronidazole at neutral pH for 30 min. The stannous chloride dihydrate was used as the reducing agent. At optimum radiolabeling conditions, ~ 94% radiochemical was obtained. Quality control analysis was carried out with a chromatographic paper and instant thin-layer chromatographic analysis. The biodistribution study of radiochemical was performed using Escherichia coli bacterial infection-induced rat model. The scintigraphic study was performed using E. coli bacterial infection-induced rabbit model. The results showed promising accumulation at the site of infection and its rapid clearance from the body. The tracer showed target-to-non-target ratio 5.57 ± 0.04 at 1 h post-injection. The results showed that 99mTc-MNZ has promising potential to accumulate at E. coli bacterial infection that can be used for E. coli infection imaging.  相似文献   

10.
Hydroxyapatite was applied as a carrier adsorbing 90Y3+ ions for 90Y-HA colloid production. The radiopharmaceutical colloid was prepared by adding an acidic solution of 90YCl3 to HA suspension in saline solution. Effective parameters on labeling of 90Y-HA were evaluated. Adsorption and cation-exchange properties were studied using inductively coupled plasma elemental analysis and N2 adsorption–desorption isotherm method. Radionuclidic purity was over 99.9 %. Labeling yield and radiochemical purity were >99 %. Radiochemical purity was evaluated also in human albumin for 7 days at 37 °C. Biodistribution studies have shown complete retention of injected radioactivity at the administration site up to 72 h.  相似文献   

11.
In this work, recently prepared 67Ga-labeled glucagon (67Ga-DTPA-GCG) for imaging studies (radiochemical purity >94%; HPLC, S.A. 296–370 GBq/mM) was used in biological studies. The wild-type rat biodistribution results, 2 h post injection, demonstrated high tissue:muscle ratios for target tissues (liver, kidney, heart, spleen, fat intestine stomach and pancreas), 234, 18.45, 7.12, 1.75, 128.7, 4.9, 6.3 and 1.11, respectively. The tracer binding capacity using freshly prepared rat brain homogenate demonstrated significant specific binding of the tracer to neuronal GCG receptors (67Ga-DTPA-GCG/67Ga:3 and 67Ga-DTPA-GCG/67GaDTPA:2.2 at 90 min). SPECT images also demonstrated target specific binding of the tracer at 4 h. The data suggests the tracer is accumulated in GCGR rich tissues 2–4 h post injection, suggesting potentials of the tracer for future imaging studies in glocagonoma models.  相似文献   

12.
Risperidone and lamotrigine were successfully labeled with 125I via direct electrophilic substitution reaction at 80 °C with maximum labeling yields of 89 ± 3.75 and 97.5 ± 1.0 %, respectively. Stability of 125I-risperidone was up to 6 h while that of 125I-lamotrigine was up to 24 h. Biodistribution studies showed that maximum uptakes of 125I-risperidone and 125I-lamotrigine in the brain of mice were 4.35 ± 0.17 and 2.51 ± 0.18 % of the injected activity/g tissue organ at 10 min post-injection, respectively. Both radioiodinated drugs showed higher brain uptake and stability compared to commercially available technetium-99m d,l-hexamethyl propyleneamine oxime.  相似文献   

13.
The optimization of the radiolabeling yield of cefazolin with 99mTc was described. Dependence of the labeling yield of 99mTc-cefazolin complex on the amounts of cefazolin and SnCl2·2H2O, pH and reaction time was studied. Cefazolin was labeled with 99mTc with a labeling yield of 89.5 % by using 1 mg cefazolin, 5 μg SnCl2·2H2O at pH 4 and 30 min reaction time. The radiochemical purity of 99mTc-cefazolin was evaluated with ITLC. The formed 99mTc-cefazolin complex was stable for a time up to 3 h, after that the labeling yield decreased 64.0 % at 8 h. Biological distribution of 99mTc-cefazolin complex was investigated in experimentally induced inflammation mice, in the left thigh, using Staphylococcus aureus (bacterial infection model) and turpentine oil (sterile inflammation model). Both thighs of the mice were dissected and counted and the ratio of bacterial infected thigh/contralateral thigh was then evaluated. In case of bacterial infection, T/NT for 99mTc-cefazolin complex was 8.57 ± 0.4 after 0.5 h, which was higher than that of the commercially available 99mTc-ciprofloxacin under the same experimental conditions. The ability of 99mTc-cefazolin to differentiate between septic and aseptic inflammation indicates that 99mTc-cefazolin could undergo further clinical trials to be used for imaging sites of infection.  相似文献   

14.
Cu-64 was produced via the 68Zn (p,αn)64Cu nuclear reaction (≈200 mCi, >95 % chemical yield at 180 μA for 1.1 h irradiation, (radionuclidic purity >96 %, copper-67 as impurity) followed by purification with amino functionalized nano magnetic oxide, Fe3O4 aiming to remove trace amount of heavy metal ions from aqueous media due to achieve ultra pure [64Cu] CuCl2 for labeling step. [64Cu] labeled 5,10,15,20-tetrakis(penta fluoro phenyl) porphyrin ([64Cu]-TFPP) was prepared using freshly prepared [64Cu] CuCl2 (Cu-64; T 1/2 = 12.7 h) and 5,10,15,20-tetrakis(penta fluoro phenyl)porphyrin (H2TFPP) for 60 min at 100 °C under reflux condition (radiochemical purity: >97 % ITLC, >98 % HPLC, specific activity: 14–16 GBq/mmol). Stability of the complex was checked in final formulation and human serum for 24 h. The partition coefficient was calculated for the compound (log P = 0.73). The biodistribution of the labeled compound in vital organs of wild-type rats was studied using scarification studies and PET imaging up in 2 and 4 h after injection. A detailed comparative pharmacokinetic study performed for 64Cu cation and [64Cu]-TFPP. The complex is mostly washed out from the circulation through kidneys and liver and can be an interesting tumor imaging/targeting agent due to high specific uptake and rapid excretion through the urinary tract.  相似文献   

15.
166Ho is one of the most effective radionuclides used for radiosynovectomy. One method to deliver this radioisotope to target tissue is via the 166Dy/166Ho in vivo generator system. The aim of this work was to prepare 166Dy/166Ho-chitosan (166Dy/166Ho-CHIT) in vivo generator for radiosynovectomy applications. 166Dy obtained by the irradiation of natural 164Dy target. 166Dy was separated from 166Ho by extraction chromatographic method (separation yield; 93% and separation factor;1.7). Chitosan labeling was performed in acetic acid with 99.3 ± 0.6% radiochemical purity. Biodistribution studies on intraarticular injected rats demonstrated high retention in the knee joint even 7 days showing no radioactivity leakage from the injection site into other organs as well as any translocation of the daughter nucleus after β? decay of 166Dy.  相似文献   

16.
In the present study, proline dithiocarbamate (PRODTC) ligand was radiolabeled with the [99mTc≡N]2+ core successfully to obtain the 99mTcN-PRODTC complex with high radiochemical purity. No decomposition of the complex at room temperature was observed over a period of 6 h. Its partition coefficient indicated that it was a hydrophilic complex. The electrophoresis results showed that the complex was negative. The biodistribution of 99mTcN-PRODTC in mice bearing S 180 tumor showed that the complex accumulated in the tumor with a certain uptake. The tumor/blood and tumor/muscle ratios reached 2.19 and 4.54 at 2 h post-injection, suggesting it would be a promising candidate for tumor imaging.  相似文献   

17.
The 2-phenyl benzothiazole pharmacophore is known to have high affinity for amyloid beta (Aβ) and is therefore derivatized, to [N-(4′-benzothiazol-pyridin-2-yl-methyl-amino)-acetic acid (BTPAA)] for radiolabeling with [99mTc(CO)3(H2O)3]+ precursor. The radiotracer, 99mTc(CO)3–BTPAA is evaluated in vitro and in vivo to determine its binding with the Aβ and ability to cross the blood brain barrier. The radiotracer prepared in >95 % radiochemical yield, showed ~25 % inhibition in presence of thioflavin-T, indicating its specificity towards aggregated Aβ protein. The radiotracer also showed brain uptake of 0.25 ± 0.04 % injected dose/g at 2 min post injection, indicating its ability to cross the blood brain barrier.  相似文献   

18.
1-(2-methoxy phenyl) piperazine fragment of WAY100635 or its phenolic analogue, derived from DWAY is used to design the desired structure of 5HT1A receptor imaging agents. In this study a DWAY analogue was labeled with 99mTc-nitrido ([99mTcN]2+) core via dithiocarbamate. 2-(piperazin-1-yl) phenol dithiocarbamate was synthesized by the reaction of 2-(piperazin-1-yl) phenol with an equivalent amount of carbon disulfide in KOH solution then radiolabeled with 99mTc-nitrido core. The final complex was characterized by HPLC and its radiochemical purity was more than 90 %. In vitro stability studies have shown the complex was stable at least 4 h after labeling at room temperature. The n-octanol/water partition coefficient experiment demonstrated log p = 1.34 for 99mTcN–OHPP–DTC. Biodistribution results showed that radio tracer had moderate brain uptake (0.39 ± 0.03 %ID/g at 15 min and 0.29 ± 0.02 %ID/g at 120 min) and good retention, suggesting that this complex may lead to a further development of a radiotracer with specific binding to 5-HT1A receptor.  相似文献   

19.
The present study is performed to compare the electrophilic substitution radioiodination reaction of two non-steroidal anti-inflammatory drugs namely, Piroxicam (Pirox) and Meloxicam (Melox) with 125I where both chloramine-T (CAT) and iodogen were used as oxidizing agents. The factors affecting the percent of radiochemical yields such as drug concentration, pH of the reaction mixtures, different oxidizing agents, reaction time, temperature and different organic media were studied to optimize the conditions for labeling of Pirox and Melox and to obtain high radiochemical yields. The maximum radiochemical yield of 125I-Piroxicam (125I-Pirox) was 94% using 3.7 MBq of Na125I, 0.4 mM of Pirox as substrate, 3.6 mM of chloramine-T (CAT) as oxidizing agent in acetone at neutral pH = 7 and at 60 °C within 20 min where the maximum radiochemical yield of 125I-Melox was 92% using 0.7 mM of Melox as substrate, 0.62 mM of iodogen as oxidizing agent in acetone at neutral pH = 7 and at 25 °C within 30 min. The radiochemical yields were determined by TLC and high-pressure liquid chromatography (HPLC). Tracers showed good localization in inflamed muscle either septic or sterile. The collected data indicates that Pirox and Melox can be used as antiinflammatory imaging agents at 24 and 2 h post injection, respectively.  相似文献   

20.
Porphyrins are interesting derivatives with low toxicity, tumor avidity and rapid wash-out suggested as potential radiopharmaceuticals in radiolabeled form. In this work, [166Ho] labeled 5,10,15,20-tetrakis(phenyl) porphyrin ([166Ho]-TPP) was prepared using [166Ho]HoCl3 and 5,10,15,20-tetrakis(phenyl)porphyrin (H2TPP) for 12 h at 50 °C (radiochemical purity: >95 ± 2 % ITLC, >99 ± 0.5 % HPLC, specific activity: 0.9–1.1 GBq/mmol). Stability of the complex was checked in final formulation and human serum for 48 h. The partition coefficient was calculated for the compound (log P = 2.01). The biodistribution of the labeled compound in vital organs of wild-type rats was studied using scarification studies and SPECT. A detailed comparative pharmacokinetic study performed for 166Ho cation and [166Ho]-TPP performed up to 24 h. The complex is mostly washed out from the circulation through kidneys and in less extends from the liver. The kidney:blood, kidney:liver and kidney:muscle ratios 4 h post injection were 14, 3.6 and 7.38 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号