首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Herein, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR and XRD to determine its chemical functional groups and micro-structure. The removal of cobalt from aqueous solution to HAP was studied by batch technique as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA), and temperature under ambient conditions. The results indicated that the sorption of Co(II) on HAP was strongly dependent on pH and ionic strength. The presence of FA enhanced the sorption of Co(II) on HAP at low pH, whereas reduced Co(II) sorption on HAP at high pH. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Co(II) on HAP was spontaneous and endothermic. The sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The results suggest that the HAP is a suitable material in the preconcentration and solidification of Co(II) from large volumes of aqueous solutions.  相似文献   

2.
Direct reduced iron (DRI), also called sponge iron, was used for the removal of U(VI) from aqueous solution. Batch experiments were conducted to evaluate the effect of various factors including contact time, solution pH, DRI dosage and initial uranium concentration on this removal process. The result suggested that U(VI) can be rapidly removed by DRI and this removal process followed an apparent first-order reaction kinetics. The optimum pH for uranium removal was between 2.0 and 4.0. Whether U(VI) can be fully removed was influenced by the molar ratio of DRI to U(VI) in solution. The aqueous U(VI) can be removed completely when this ratio was more than ca. 1,000. The U(VI) removal capacities of DRI decreased with increasing DRI dosages at a constant concentration of U(VI), but increased almost linearly with increasing initial U(VI) concentrations at a fixed dosage of DRI. The maximum U(VI) removal capacity was 5.71 mg/g DRI. Finally, the possible mechanism of U(VI) removal by DRI was also discussed. The XPS and XRD analysis showed that U(VI) was deposited as UO3 onto DRI surface, indicating that U(VI) can be removed without reduction.  相似文献   

3.
Composites could be more effective adsorbents than inorganic and organic components individually. In the present study, the red macro marine algae, Jania Rubens and yeast, Saccharomyces cerevisiae immobilized on silica gel were used as a constituent of bi-functionalized biosorbent to remove thorium ions from aqueous solution. Optimum biosorption conditions were determined as a function of pH, initial Th(IV) concentration, contact time, temperature, volume/mass ratio and co-ion effect. The morphological analysis of the biocomposite was performed by the scanning electron microscopy and functional groups in the biosorbent were determined by FT-IR spectroscopy. In order to find the adsorption characteristics, Langmuir, Freundlich, and Dubinin–Radushkevich adsorption isotherms were applied to the adsorption data. The data were well described by Langmuir adsorption isotherms while the fit of Freundlich adsorption isotherms and Dubinin–Radushkevich equation to adsorption data was poor. Using the equilibrium constant value obtained at different temperature, the thermodynamics properties of the biosorption (ΔG°, ΔH° and ΔS°) were also determined. The results show that biosorption of Th(IV) ions onto biocomposite was exothermic nature, spontaneous and more favorable at lower temperature under examined conditions.  相似文献   

4.
5.
Journal of Radioanalytical and Nuclear Chemistry - The removal of Co2+ in aqueous solution by spent green tealeaves (SGTL) was studied in batch conditions. The bio-sorbent was characterized by the...  相似文献   

6.
Removal of Zn(II) from aqueous solution by natural halloysite nanotubes   总被引:1,自引:0,他引:1  
Clay minerals have been widely used in wastewater disposal due to their strong sorption and complexation ability towards various environmental pollutants. In this study, the removal of Zn(II) from aqueous solution by natural halloysite nanotubes (HNTs) was studied as a function of various solution chemistry conditions such as contact time, pH, ionic strength, coexisting electrolyte ions and temperature under ambient conditions. The results indicated that the removal of Zn(II) by HNTs was strongly dependent on pH and ionic strength. Langmuir and Freundlich models were used to simulate the sorption isotherms of Zn(II) at three different temperatures of 293, 313 and 333 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the removal process of Zn(II) by HNTs was endothermic and spontaneous. At low pH, the removal of Zn(II) was dominated by outer-sphere surface complexation and/or cation exchange with Na+/H+ on HNT surfaces, whereas inner-sphere surface complexation was the main removal mechanism at high pH. From the experimental results, one can conclude that HNTs may have a good potentiality for the disposal of Zn(II)-bearing wastewaters.  相似文献   

7.
以双硫腙为配体,溴化十六烷基三甲基铵(CTAB)为表面活性剂。对Zn离子在无机相中形成的Zn-双硫腙-CTAB体系的溶剂气浮进行了研究。研究表明表面活性剂与Zn离子的物质的量之比为5:1,约1h水中的锌离子去除率可达98%。0.5mol/L NaCl大大提高体系的溶剂气浮的去除率,溶剂气浮的速率随着气流速率的增加而增加,共存溶质乙醇存在会使去除率降低,有机溶剂的量对溶剂气浮影响较小,溶剂气浮过程遵从假一级动力学。考察了不同温度下溶剂气浮的回收速率,计算了该过程中的气浮表观活化能为9.037kJ/mol。  相似文献   

8.
Magnetic biochar, as an adsorbent, was synthesized by a single step method, where iron salt was directly mixed with pinewood sawdust by chemical co-precipitation and subsequently pyrolyzed at 700°C for Cr (VI) removal from aqueous solution. The effects of some important parameters including adsorbent dosage (0.4–2.8?g/L), pH (1–10) of the solution, contact time (0–1440 minutes), initial concentration (30–120?mg/L), and temperature (20–40°C) were investigated in batch experiments. Both pre- and post-adsorbents were characterized by SEM-EDX and XPS to investigate the adsorption mechanism. The maximum adsorption capacity of the tested magnetic biochar under the certain experimental conditions determined as optimal was 42.7?mg/g for Cr (VI). The adsorption data were proved to be suitable for the pseudo-second order model for kinetics and the Langmuir model for isotherms with correlation R2?=?0.9996 andR2?>?0.9980, respectively, after fitting with four kinetic models (pseudo-first order, pseudo-second order, W-M model, and Elovich) and three isotherm models (Langmuir, Freundlich, and Temkin). The characteristic analyses further verified that the efficient particle was a mixture of iron oxides in essence, and it had a strong effect on the spontaneous and endothermic adsorption process.  相似文献   

9.
Zuo  Rui  Jin  Shuhe  Yang  Jie  Wang  Jinsheng  Guan  Xin  Meng  Li  Teng  Yanguo  Chen  Minhua 《Journal of Radioanalytical and Nuclear Chemistry》2019,321(1):151-159
Journal of Radioanalytical and Nuclear Chemistry - Palygorskite (PAL) was modified with sodium dodecyl sulfate (SDS) for the removal of Sr(II) from aqueous solutions. Analysis of the structural...  相似文献   

10.
Uranium is a toxic and radioactive heavy metal found in nuclear effluents and should be treated based on environmental considerations. The adsorption of uranyl cations (UO2 2+) by apricot shell activated carbon (ASAC) was investigated in a batch system. The effects of pH, contact time, temperature, adsorbent dosage on the adsorption kinetics and equilibrium adsorption isotherms of U(VI) were examined. The U(VI) uptake was fast within the first 60 min and reached an equilibrium state at 120 min. The adsorption process was highly pH dependent and the maximum adsorption was obtained at an initial solution pH of 6.0. Temperature over the range 25–45 °C had little effect on the U(VI) adsorption. The U(VI) removal efficiency increased concurrently with increasing ASAC dosage, whereas the U(VI) adsorption capacity decreased with increasing ASAC dosage. The adsorption process followed both Langmuir and Freundlich isotherms. On the basis of Langmuir model, the maximum adsorption capacity was found to be 59.17 mg U(VI)/g adsorbent. The adsorption kinetics can be very well defined by the pseudo-first-order rate model. The present results suggest that ASAC could be used as an adsorbent for an efficient removal of U(VI) from aqueous solution.  相似文献   

11.
12.
A low-cost, highly efficient and eco-friendly cellulose-based adsorbent (CMGT) was synthesized and used to uptake Pb(II) and malachite green (MG) from aqueous solutions. The CMGT was characterized by FTIR, SEM, TGA and XRD. Different experimental parameters were evaluated in batch adsorption experiments to determine the optimal adsorption conditions. The optimal pHs for Pb(II) and MG were 5.5 and 7.0, respectively; the optimal contact times for Pb(II) and MG were 60 and 180 min, respectively. Among the Langmuir, Freundlich and Temkin isotherm models, the Langmuir model fitted the adsorption data best for both Pb(II) and MG adsorption. In theory, the maximum adsorption capacities of Pb(II) and MG were 584.80 and 131.93 mg g?1, respectively. The pseudo-second-order model fitted the experimental data very well, and the thermodynamics were also used to discuss the mechanism in depth. Additionally, desorption tests showed that CMGT could be effectively regenerated by 0.2 mol L?1 HCl solution and could be reused for at least six cycles successively with a stable sorption ability in the dynamic adsorption process.  相似文献   

13.
Removal of methyl violet from aqueous solution by perlite   总被引:2,自引:0,他引:2  
The use of perlite for the removal of methyl violet from aqueous solutions at different concentration, pH, and temperature has been investigated. Adsorption equilibrium is reached within 1 h. The capacity of perlite samples for the adsorption of methyl violet was found to increase with increasing pH and temperature and decrease with expansion and increasing acid-activation. The adsorption isotherms are described by means of the Langmuir and Freundlich isotherms. The adsorption isotherm was measured experimentally at different conditions and the experimental data were correlated reasonably well by the adsorption isotherm of Langmuir. The order of heat of adsorption corresponds to a physical reaction. It is concluded that the methyl violet is physically adsorbed onto the perlite. The removal efficiency (P) and dimensionless separation factor (R) have shown that perlite can be used for removal of methyl violet from aqueous solutions, but unexpanded perlite is more effective.  相似文献   

14.
15.
The study was undertaken to evaluate the feasibility of oxidized multiwalled carbon nanotube (oxidized MWCNT) for the removal of radiocobalt (60Co) from aqueous solutions. The oxygen functional groups of oxidized MWCNT were characterized by FT-IR and XPS. Batch experiments were performed to study the sorption of cobalt as a function of contact time, solid contents, pH, ionic strength, foreign ions, and temperature. Two kinetic models viz. pseudo-first-order and pseudo-second-order were used to determine kinetic sorption parameters, and the kinetic sorption could be described more favorably by the pseudo-second-order model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on oxidized MWCNT was an endothermic and spontaneous processes. The results suggest that oxidized MWCNT can be used efficiently in the treatment of industrial effluents containing radioactive and heavy metal ions.  相似文献   

16.
Journal of Radioanalytical and Nuclear Chemistry - In this study, the removal of hexavalent chromium, a nonradioactive analogue of pertechnetate, from aqueous solution by bamboo shoot shell (BSS)...  相似文献   

17.
Three low-cost adsorbents (purified raw attapulgite (A-ATP), high-temperature-calcined attapulgite (T-ATP), and hydrothermal loading of MgO (MgO-ATP)) were prepared as adsorbents for the removal of Cd(II) and Pb(II). By evaluating the effect of the initial solution pH, contact time, initial solution concentration, temperature and coexistence of metal ions on Cd(II) and Pb(II) adsorption, the experimental results showed that MgO-ATP was successfully prepared by hydrothermal reaction and calcination as well as appearing to be a promising excellent adsorbent. At an initial pH of 5.0, A-ATP, T-ATP and MgO-ATP reached maximum adsorption amounts of 43.5, 53.9 and 127.6 mg/g for Pb(II) and 10.9, 11.2, and 25.3 mg/g for Cd(II) at 298 K, respectively. The Cd(II) adsorption on A-ATP was fitted by the Freundlich model, while the adsorption of Pb(II) and Cd(II) on T-ATP and MgO-ATP as well as Pb(II) adsorption on A-ATP agreed with the Langmuir model. All kinetic experimental data favored pseudo second-order model. The calculated thermodynamic parameters suggested that Pb(II) adsorption onto MgO-ATP was spontaneous and exothermic. When considering foreign metal ions, the three adsorbents all presented preferential adsorption for Pb (II). Chemical adsorption had a high contribution to the removal of Cd(II) and Pb(II) by modified attapulgite. In summary, the adsorption was greatly enhanced by the hydrothermal loading of MgO. It aimed to provide insights into the MgO-ATP, which could be able to efficiently remove Cd(II) and Pb(II) and serve as an economic and promising adsorbent for heavy metal-contaminated environmental remediation.  相似文献   

18.
Different types of activated carbons were prepared by changing the activation temperatures (400–700 °C) and impregnation ratio (sewage sludge: KOH; 1:1, 1:2) and the removal of Sr+2 from aqueous solution was determined. The maximum adsorption yield (12.11 mg/g) was obtained at 500 °C for 1 h carbonization conditions with impregnation ratio of 1:1. The affecting parameters were analyzed by using central composite design method. The selected parameters were initial pH, temperature, initial strontium concentration and carbon dosage. The analysis of variance was performed in 95% confidence level and checked to fitting of experimental value and predicted value. The significant F was P < 0.05 with a model F value of 19.94 which revealed that this regression is statistically significant. The results of regression analysis indicated that pH and temperature parameters were not individually statistically significant for Sr+2sorption. However, the efficiency of strontium sorption increases with the increase in carbon dosage and decreases with the Sr+2 concentration. Influences of initial pH and temperature, pH and Sr+2 concentration, temperature and carbon dosage and Sr+2 concentration and carbon dosage on the adsorption process were considered statistically significant. Adsorption of strontium was described by Freundlich isotherm as a physical adsorption (E = 7.2 kJ/mol). The adsorption reactions were calculated as endothermic, spontaneous and favorable reactions.  相似文献   

19.
20.
Journal of Radioanalytical and Nuclear Chemistry - Low-cost adsorbents, synthesized by pyrolysis of waste rubber (CR) and activated with KOH (CRA), have shown the high removal ability of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号