首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U(VI) sorption from nitric media using Cyanex272 impregnated on Amberlite XAD-2 resin has been studied using batch method. The influence of different experimental parameter such as aqueous acidity, effect of time, influence of eluting agents on U(VI) uptake was evaluated. The maximum sorption capacity of 0.168?mmol?g?1 of U(VI) evaluated based upon these studies. Sorption of U(VI) follows both the Langmuir and Freundlich adsorption isotherms.  相似文献   

2.
Amberlite XAD-4 resin has been functionalized with succinic acid by coupling it with dibromosuccinic acid after acetylation. The resulting resin has been characterized by FT-IR, elemental analysis and TGA and has been used for preconcentrative separation of uranium(VI) from host of other inorganic species prior to its determination by spectrophotometry. The optimum pH value for quantitative sorption of uranium(VI) in both batch and column modes is 4.5-8.0 and desorption can be achieved by using 5.0 ml of 1.0 mol l−1 HCl. The sorption capacity of functionalized resin is 12.3 mg g−1. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 50 μg of uranium(VI) present in 1000 ml of solution gave a mean absorbance of 0.10 with a relative standard deviation of 2.56%. The detection limit corresponding to three times the standard deviation of the blank was found to be 2 μg l−1. Various cationic and anionic species at 200-fold amounts do not interfere during the preconcentration of 5.0 μg of uranium(VI) present in 1000 ml (batch) or 100 ml (column) of sample solution. Further, adsorption kinetic and isotherm studies were also carried out by a batch method to understand the nature of sorption of uranium(VI) with the succinic acid functionalized resin. The accuracy of the developed solid phase extractive preconcentration method in conjunction with Arsenazo III procedure was tested by analyzing marine sediment (MESS-3) and soil (IAEA soil-7) reference material. Further, the above procedure has been successfully employed for the analysis of soil and sediment samples.  相似文献   

3.
Singh BN  Maiti B 《Talanta》2006,69(2):393-396
Amberlite XAD-4 adsorber resin was modified with 8-hydroxy quinoline (Oxine) by equilibrating with methanol solution of the reagent and the modified resin was used as a support material for the solid phase extraction and preconcentration of UO22+ from aqueous solution at pH between 4 and 5.5. Ten micrograms of uranium from 300 ml of aqueous phase could be quantitatively extracted in to 1 g of the modified resin giving an enrichment of 200. Uranium collected in the column could be eluted out with methanol-HCl mixture and determined spectrophotometrically using arsenazo(III) as the chromogenic reagent. The preconcentration could be made selective to uranium by using EDTA as a masking agent for transition metal ions and Th(IV).  相似文献   

4.
Jain VK  Sait SS  Shrivastav P  Agrawal YK 《Talanta》1997,45(2):397-404
A very stable chelating resin matrix was synthesized by covalently linking o-vanillinthiosemicarbazone (oVTSC) with the benzene ring of the polystyrene-divinylbenzene resin Amberlite XAD-2 through a -NN- group. The resin was used successfully for the separation and preconcentration of copper(II), zinc(II) and lead(II) prior to their determination by atomic absorption spectrophotometry. The total sorption capacity of the resin was 850, 1500 and 2000 mug g(-1) of the resin for Cu(II), Zn(II) and Pb(II), respectively. For the quantitative sorption and recovery of Cu(II), Zn(II) and Pb(II), the optimum pH and eluants were pH 2.5-4.0 and 4 M HCl or 2 M HNO(3) for Cu(II), pH 5.5-6.5 and 1.0-2.0 M HCl for Zn(II) and pH 6.0-7.5 and 3 M HCl or 1 M HNO(3) for Pb(II). Both, the uptake and stripping of these metal ions were fairly rapid, indicating a better accessibility of the chelating sites. The t (1 2 ) values for Cu(II), Zn(II) and Pb(II) were also determined. Limit of tolerance of some electrolytes like NaCl, NaF, NaNO(3), Na(2)SO(4) and Na(3)PO(4) have been reported. The preconcentration factor for Cu(II), Zn(II) and Pb(II) was 90, 140 and 100 respectively. The method was applied for the determination of Cu(II), Zn(II) and Pb(II) in the water samples collected from Sabarmati river, Ahmedabad, India.  相似文献   

5.
A rapid and sensitive flow injection online preconcentration method was developed for determination of Cd, Co, Cu, and Zn in natural water samples by flame atomic absorption spectrometry. The procedure is based on the retention of analytes in the form of 2,6-dihydroxyphenyl-diazoaminoazobenzene (DHDAA) complexes on a microcolumn packed with XAD-4-DHDAA resin. Cd, Co, Cu, and Zn can be eluted from the microcolumn with 0.5 mol L−1 HCl and pumped directly to the nebulizer-burner system of the flame atomic absorption spectrometer (FAAS). The enrichment factors are 42 (Cd), 33 (Co), 28 (Cu), and 31 (Zn), for a sample volume of 6.0 mL and 1 min preconcentration time relative to direct introduction of aqueous solutions into an atomic absorption spectrometer. The sampling frequency was 30 h−1 with a 1 min loading. The proposed method allowed the determination of Cd, Co, Cu, and Zn with detection limits of 0.1, 0.5, 0.3, and 0.2 μg L−1, respectively. The selectivity of the XAD-4-DHDAA resin for Cd, Co, Cu, and Zn over several electrolytes was also investigated. The method was validated by analysis of a standard reference material (GBW 08301) with the results agreement with those quoted by manufactures. The developed method was applied to the determination of trace Cd, Co, Cu, and Zn in tap water, ground water and river water samples with satisfactory results.  相似文献   

6.
U(VI) was quantitatively extracted from 1·10−3M HNO3 using 5·10−3M Cyanex 302 in xylene and was stripped from organic phase with 5M HCl. The optimum extraction conditions have been evaluated by studying parameters like acidity, effect of diluents, extractant concentration and period of equilibration. Based on this data, the separations of uranium from binary and complex metal mixtures and its recovery from uranmicrolite tailings (leachate) were successfully tested. Uranium can be determined with a relative standard deviation of 0.4%.  相似文献   

7.
A simple and sensitive method for the determination of ultra trace amounts of U(VI) and Th(IV) ions by spectrophotometric method after solid-phase extraction on a new extractant-impregnated resin (EIR) has been reported. The new EIR was synthesised by impregnating a weakly polar polymeric adsorbent, Amberlite XAD-7, with titan yellow (TY) as extractant. The analytical method is based on the simultaneous adsorption of analyte ions in a mini-column packed with TY/XAD-7 and performing sequential elution with 0.5% (w/v) Na2CO3 for uranium and 2.0 M HCl for thorium. The influences of the analytical parameters including pH, salting out agent and sample volume were investigated. The interference effects of foreign ions on the retention of the analyte ions were also explored. The limits of detection for U(VI) and Th(IV) were as low as 50 and 25 ng L?1, respectively. Relative standard deviations (n = 7) for U(VI) and Th(IV) were 3.1% and 2.9%, respectively. The method was successfully applied to the determination of ultra trace amounts of U(VI) and Th(IV) in different real matrices including industrial wastewater samples and environmental waters. The proposed method was validated using three certified reference materials and the results were in good agreement with the certified values.  相似文献   

8.
Lemos VA  Baliza PX 《Talanta》2005,67(3):564-570
A new functionalized resin has been applied in an on-line preconcentration system for copper and cadmium determination. Amberlite XAD-2 was functionalized by coupling it to 2-aminothiophenol (AT-XAD) by means of an NN spacer. This resin was packed in a minicolumn and used as sorbent in the on-line system. Metal ions were sorbed in the minicolumn, from which it could be eluted directly to the nebulizer-burner system of the flame atomic absorption spectrometer (FAAS). Elution of Cd(II) and Cu(II) from minicolumn can be made with 0.50 mol l−1 HCl or HNO3. The enrichment factors obtained were 28 (Cd) and 14 (Cu), for 60 s preconcentration time, and 74 (Cd) and 35 (Cu), if used 180 s preconcentration time. The proposed procedure allowed the determination of cadmium and copper with detection limits of 0.14 and 0.54 μg l−1, respectively, when used preconcentration periods of 180 s. The effects of foreign ions on the adsorption of these metal ions are reported. The validation of the procedure was carried out by analysis of certified reference material. This procedure was applied to cadmium and copper determination in natural, drink and tap water samples.  相似文献   

9.
Extraction of U(VI) from HNO3, HCl and HClO4 media using cyanex-272 (bis[2,4,4 trimethyl pentyl] phosphinic acid)/n-dodecane has been carried out. In the case of HNO3 and HClO4 media, the distribution ratio (D) value first decreases and then increases, whereas from HCl medium it first decreases and then remains constant with increase in H+ ion concentration. At lower acidities, U(VI) was extracted as UO2(HA2)2 by an ion exchange mechanism, whereas at higher acidities as UO2(NO3)2 .2(H2A2) following a solvation mechanism. The D for U(VI) by cyanex-272, PC-88A and DEHPA at low acidities follows the order cyanex-272 > PC-88A > DEHPA. Also, cyanex-272 was found to extract U(VI) more efficiently than TBP at 2M HNO3. The effect of diluents on the extraction of U(VI) by cyanex-272 followed the order cyclohexane > n-dodecane > CCl4 > benzene. The loading of U(VI) into cyanex-272/n-dodecane from 2M HNO3 has shown that at saturation point, cyanex-272 was 78% loaded. No third phase was observed at the saturation level. The stripping of U(VI) from the loaded organic phase was not possible with water, it was poor with acetic acid and sodium acetate but quantitative with oxalic acid, ammonium carbonate and sodium carbonate.  相似文献   

10.
11.
Coriolus versicolor, a wood fungus, was immobilised on Amberlite XAD-4 and used as solid-phase biosorbent for preconcentrations of rare earth elements. La(III), Th(IV), U(IV) and Ce(III) were subjected to solid-phase extraction procedure. We observed that La(III) was selectively preconcentrated, while other ions remained in solution at pH 6.0. 5.0 mL of 1.0 mol L?1 HCl was used to elaute La(III) from column. 250 mg of C. versicolor loaded on 1000 mg of XAD-4 was optimised as solid-phase matrix. Concentrations of ions in solutions were determined by inductively coupled plasma– optical emission spectrometry (ICP-OES). The calibration plot after preconcentration was linear in the range from 1.0 to 50.0 ng mL?1 for La(III). Limit of detection was found as 0.27 ng mL?1 for La(III) by SPE method. Relative standard deviation was found lower than 6.7% for 1.0 ng mL?1 of La(III) solution (n = 10). The sensitivity of ICP-OES was improved by a factor of 46.8. The applicability of the method was validated through the analysis of certified reference samples of tea (NCS ZC-73014) and spinach (NCS ZC-73013).  相似文献   

12.
Merdivan M  Düz MZ  Hamamci C 《Talanta》2001,55(3):639-645
The sorption of U(VI) by N, N-dibutyl, N'-benzoylthiourea (DBBT) impregnated resin has been studied. DBBT impregnated resin was prepared by direct adsorption of chelating ligand onto macroporous support, Amberlite XAD-16. The adsorption of DBBT on the macroporous support is shown by FTIR spectroscopy to be the result of only weak chelating ligand-support interactions. Parameters such as the pH effect on the sorption of uranium, the sorption capacity of the impregnated resin, the stripping of uranium and the effect of coexisting ions were investigated by batch experiments. The results demonstrated that uranium(VI) ions, at pH 4.5-7 could be sorbed completely using 0.1 g Amberlite XAD-16 resin loaded with DBBT. The sorption capacity of the impregnated resin is 0.90 mmol uranium(VI) g(-1). Quantitative recovery of U(VI) is achieved by stripping with 0.1 M HNO(3). The method was applied to the determination of uranium in synthetic samples. The precision of the method was 2.4 RSD% in a concentration of 1.20 mug ml(-1) for ten replicate analysis.  相似文献   

13.
Tunçeli A  Türker AR 《Talanta》2000,51(5):889-894
A method of silver preconcentration by using a column containing Amberlite XAD-16 resin and this future determination by a flame AAS after elution is proposed. The effect of the factors such as pH, the nature of complexing agent, sample volume, flow rate, the type and concentration of elution solution on the preconcentration efficiency have been investigated. The influence of some matrix elements on the recovery of silver were also examined. It was found, that the quantitative recovery of thiocyanate complex of silver was obtained from nitric acid solution (pH 2) as 99.20+/-0.07% at the 95% confidence level. A preconcentration factor up to 75 could be obtained. The detection limit of silver was 0.047 mg l(-1). The adsorption of silver onto Amberlite XAD-16 can be formally described by a Langmuir equation with maximum adsorption capacity 4.66 mg g(-1) (0.043 mmol g(-1)). The proposed method was applied to determination of silver in standard alloy with relative error 6.25%.  相似文献   

14.
A new grafted polymer has been developed by the chemical modification of Amberlite XAD-16 (AXAD-16) polymeric matrix with [(2-dihydroxyarsinoylphenylamino)methyl]phosphonic acid (AXAD-16-AsP). The modified polymer was characterized by a combination of 13C CPMAS and 31P solid-state NMR, Fourier transform-NIR-FIR-Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis (TGA). The distribution studies for the extraction of U(VI), Th(IV), and La(III) from acidic solutions were performed using an AXAD-16-AsP-packed chromatographic column. The influences of various physiochemical parameters on analyte recovery were optimized by both static and dynamic methods. Accordingly, even under high acidities (>4 M), good distribution ratio (D) values (102–104) were achieved for all the analytes. Metal ion desorption was effective using 1 mol L–1 (NH4)2CO3. From kinetic studies, a time duration of <15 min was sufficient for complete metal ion saturation of the resin phase. The maximum metal sorption capacities were found to be 0.25, 0.13, and 1.49 mmol g–1 for U(VI); 0.47, 0.39, and 1.40 mmol g–1 for Th(IV); and 1.44, 1.48, and 1.12 mmol g–1 for La(III), in the presence of 2 mol L–1 HNO3, 2 mol L–1 HCl, and under pH conditions, respectively. The analyte selectivity of the grafted polymer was tested in terms of interfering species tolerance studies. The system showed an enrichment factor of 365, 300, and 270 for U(VI), Th(IV), and La(III), and the limit of analyte detection was in the range of 18–23 ng mL–1. The practical applicability of the polymer was tested with synthetic nuclear spent fuel and seawater mixtures, natural water, and geological samples. The RSD of the total analytical procedure was within 4.9%, thus confirming the reliability of the developed method.  相似文献   

15.
A very sensitive, selective and simple flow injection time-based method was developed for on-line preconcentration and determination of thorium(IV) at micro g L–1 levels in environmental samples. The system operation was based on thorium(IV) ion retention at pH 4.0 in the minicolumn at a flow rate of 15.2 mL min–1. The trapped complex was then eluted with 3.6 mol L–1 HCl at a flow rate of 4.9 mL min–1. The amount of thorium(IV) in the eluate was measured spectrophotometrically at 651 nm using arsenazo-III solution (0.05 % in 3.6 mol L–1 HCl stabilized with 1 % triton X-100, 4.9 mL min–1) as colorimetric reagent. All chemical, and flow injection variables were optimized for the quantitative preconcentration of metal and a study of interference level of various ions was also carried out. The system offered low backpressure and improved sensitivity and selectivity. At a preconcentration time of 60 s and a sample frequency of 40 h–1, the enhancement factor was 97, the detection limit was 0.25 μg L–1, and the precision expressed as relative standard deviation was 1.08 % (at 50 μg L–1), whereas for 300 s of the preconcentration time and a sample frequency of 10 h–1, the enhancement factor of 357, the detection limit (3σ) of 0.069 μg L–1 and the precision of 1.32 % (at 10 μg L–1) was reported. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference material IAEA-SL-1 (Lake Sediment) and spiked water samples.  相似文献   

16.
The extraction of thorium(IV) and uranium(VI) from nitric acid solutions has been studied using mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex272 or HA), and synergistic extractants (S) such as tri-butylphosphate (TBP), tri-octylphosphine oxide (TOPO) or bis(2,4,4-trimethylpentyl)thiophosphinic acid (Cyanex301). The results showed that these metallic ions are extracted into kerosene as Th(OH)2(NO3)A·HA and UO2(NO3)A·HA with Cyanex272 alone. In the presence of neutral organophosphorus ligands TBP and TOPO, they are found to be extracted as Th(OH)2(NO3)A·HA·S and UO2(NO3)A·HA·S. On the other hand, Th(IV), U(VI) are extracted as Th(OH)2(NO3)A·HA·2S and UO2(NO3)A·HA·S in the presence of Cyanex301. The addition of neutral extractants such as TOPO and TBP to the extraction system enhanced the extraction efficiency of both elements while Cyanex301 as an acidic extractant has improved the selectivity between uranium and thorium. The effect of TOPO on the extraction was higher than other extractants. The equilibrium constants of above species have been estimated by non-linear regression method. The extraction amounts were determined and the results were compared with those of TBP. Also, it was found that the binding to the neutral ligands by the thorium–Cyanex272 complexes follows the neutral ligand basicity sequence.  相似文献   

17.
A simple and selective spectrophotometric method has been developed for the extraction and separation of thorium(IV) from sodium salicylate media using Cyanex 272 in kerosene. Thorium(IV) was quantitatively extracted by 5 × 10−4 M Cyanex 272 in kerosene from 1 × 10−5M sodium salicylate medium. The extracted thorium(IV) was stripped out quantitatively from the organic phase with 4.0 M hydrochloric acid and determined spectrophotometrically with arsenazo(III) at 620 nm. The effect of concentrations of sodium salicylate, extractant, diluents, metal ion and strippants has been studied. Separation of thorium(IV) from other elements was achieved from binary as well as multicomponent mixtures such as uranium(VI), strontium(II), rubidium(I), cesium(I), potassium(I), Sodium(I), lithium(I), lead(II), barium(II), beryllium(II) etc. Using this method separation and determination of thorium(IV) in geological and real samples has been carried out. The method is simple, rapid and selective with good reproducibility (approximately ±2%).  相似文献   

18.
Journal of Radioanalytical and Nuclear Chemistry - Impregnation of tri-n-octylamine (TOA) into Siplite LX-16 resin, by two commonly used methods namely; wet and dry impregnation method, was studied...  相似文献   

19.
Tewari PK  Singh AK 《Talanta》2002,56(4):735-744
Four chelating matrices prepared by coupling Amberlite XAD-2 with chromotropic acid (AXAD-2-CA or 1), pyrocatechol (AXAD-2-PC or 2) and thiosalicylic acid (AXAD-2-TSA or 3) through azo spacer and impregnation of Amberlite XAD-7 with xylenol orange (AXAD-7-XO or 4) have been studied for enrichment of lead(II). All the four resins quantitatively sorb Pb(II) at pH 3.0-8.0 when the flow rate is maintained between 2 and 10 mlmin(-1). HNO(3) (0.5-4.0 M) instantaneously elutes Pb(II) from all the four chelating resins. The sorption capacity is in the range 16.0-186.0 mumolg(-1) and loading half time (t(1/2)) between 3.2 and 15.5 min. The tolerance limits of electrolytes (NaCl, NaBr, NaNO(3), Na(2)SO(4), Na(3)PO(4)) and cations (Ca and Mg) are reported. Phosphate interferes in the sorption with 3 and 4. The limit of detection and limit of quantification have been found to be in the ranges 2.44-7.87 and 2.76-8.64 ngml(-1), respectively. Lead has been determined in river (RSD approximately 2.6-12.8%) and tap (RSD approximately 1.8-7.2%) water samples.  相似文献   

20.
The Amberlite XAD-7 resin modification was carried out by loading 2-(1-(4-chlorophenyl)-4,5-diphenyl-1H-imidazol-2yl)-4-nitrophenol (CPDPINP). Subsequently, this new sorbent was applied for the enrichment of metal ions such as Cu2+, Ni2+, Co2+ Zn2+ and Pb2+ ions. The effect of various parameters on their sorption and following recoveries was studied in column procedure. The preconcentrated ions were eluted by appropriate eluent and their contents were quantified by FAAS. This method has preconcentration factor of 150 and enrichment factor in the range of 20.8–29.1. At optimum values of all variables, the proposed method has linear calibration graphs in the range of 0.01 up to 0.29 μg mL−1 with detection limit (3SDb/m, n = 15) between 1.6 and 2.6 ng mL−1. This protocol is usable for successful analysis of Cu2+, Ni2+, Co2+ Zn2+ and Pb2+ ions in different matrices with reasonable recoveries (>93%) and acceptable relative standard deviation (<4.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号