首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This study focuses on the thermal and mineralogical transformations of clay ceramic pastes. The pastes contain different amounts of sugarcane bagasse ash waste. Thermal and mineralogical changes occurring during firing were characterized by differential thermal analysis, thermogravimetry analysis (TG), X-ray diffraction (XRD), and scanning electron microscopy. On heating three endothermic events within the 73.5–75.7, 276.9–283.5, and 567.1–573.5 °C temperature ranges were identified. The endothermic valleys could be mainly interpreted as the release of physically adsorbed water, dehydration of hydroxides, and dehydroxylation of kaolinite, respectively. Two exothermic events within the 618.9–690.1 and 948 °C temperature ranges were identified. The exothermic peaks are associated with the decomposition of organic compounds and crystallization of mullite from metakaolinite, respectively. TG results indicate that the clay ceramic pastes had a total mass loss in the 13.1–13.6 % range, and are dependent on the sugarcane bagasse ash waste amount added. It was found that the replacement of natural clay with sugarcane bagasse ash waste, in the range up to 20 wt%, influenced the thermal behavior and technological properties of the clay ceramic pastes. In addition, the thermal analysis results agree well with the XRD.  相似文献   

2.
In this study, the effects of four types of clay minerals on the thermal decomposition of 12-aminolauric acid (ALA) were investigated. The decomposition temperature of ALA in ALA–clay complexes was in the range of 200–500 °C. The derivative thermogravimetry results indicated that all clay minerals exhibited catalytic activity on the decomposition of ALA. Pure ALA decomposed at approximately 464 °C, a temperature higher than the decomposition temperature of ALA in the presence of clay minerals. The decomposition temperature of ALA in different ALA–clay complexes follows the order illite (452 °C) > kaolinite (419 °C) > rectorite (417 °C) > montmorillonite (400 °C). This order is negatively correlated with the amounts of solid acid sites in the clay minerals, indicating that ALA is catalyzed by the solid acid sites in these minerals.  相似文献   

3.
CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as sepiolite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal changes in the sepiolite as the sepiolite is converted to an anhydride. In the dynamic experiment two dehydration steps are observed over the ~20–170 and 170–350 °C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201–337, 337–638 and 638–982 °C. The CRTA technology enables the separation of the thermal decomposition steps.  相似文献   

4.
This study examined several candidate raw materials for use as the reactive agents in developing new oxygen carriers for chemical looping combustion. A thermogravimetric analyzer, Mettler TGA/DSC1, was used to measure oxygen capacity and relative reaction rates during oxidation and reduction cycles. The reactive gases used were 4 % hydrogen in inert gas for the reduction cycle and air for the oxidation cycle, with a nitrogen purge between reduction and oxidation cycles. Samples were typically tested for at least ten cycles to study any change in reactivity or oxygen capacity. Reaction temperatures tested ranged from 700 to 900 °C. Materials tested included an iron oxide ore, iron-based tailings from a metals extraction process, a nickel oxide supported on nickel aluminate and a copper oxide plus inert material system. The materials varied in their oxygen capacity, reactivity and the change in properties with repeat cycles. Of the samples tested, the NiO–NiAl2O4 oxygen carrier demonstrated the fastest reaction in reduction and oxidation and had stable properties over ten cycles. The iron oxide ore sample performance declined significantly with repeat cycles. The performance of the iron-based tailings declined slightly over the ten cycles. The addition of inert second phase materials to CuO improved the performance by inhibiting sintering of the oxide at the operating temperature. Although the reactivity of the tailings and iron hydroxide samples was not as high as the NiO based oxygen carrier, they are promising carrier materials due to their low cost and lower toxicity relative to nickel. Future experiments will look at CO and CH4 reduction reactions using the TG, surface characterization using SEM, XRD, and cyclic testing in a batch fluidized bed reactor.  相似文献   

5.
Thermal stability and decomposition kinetics for two energetic materials, potassium nitroform (KNF) and 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), were investigated to obtain information on their safety for handling, storage, and use. Differential scanning calorimetry (DSC) and simultaneous thermogravimetry-differential thermal analysis (TG-DTA) techniques have been used to study thermal behavior of these energetic compounds. The results of TG analysis revealed that the main thermal degradation for the KNF occurs during two temperature ranges of 270?C330 and 360?C430?°C. Meanwhile, NTO decomposes completely in temperature range of 250?C300 °C. TG-DTA analysis of KNF indicates that this energetic compound dehydrated (at about 108?°C) before its decomposition. However, NTO is thermally stable until its decomposition. The decomposition kinetic of energetic materials was studied by non-isothermal DSC under various heating rates. Kinetic parameters such as activation energy and frequency factor for thermal decomposition of energetic compounds were obtained via the methods proposed by ASTM E696 and Starink. Also, thermodynamic parameters correspond to the activation of thermal decomposition and critical ignition temperatures of the compounds were obtained.  相似文献   

6.
Controlled rate thermal analysis (CRTA) technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as sepiolite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal changes in the sepiolite as the sepiolite is converted to an anhydride. In the dynamic experiment two dehydration steps are observed over the ~20–170 and 170–350 °C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201–337, 337–638 and 638–982 °C. The CRTA technology enables the separation of the thermal decomposition steps.  相似文献   

7.
Combustion of heat-insulators produced from technogenic raw materials without use of conventional natural materials were studied. It is shown that most part of volatiles are removed in thermal treatment of heat insulators in the temperature range 400?C600°C, the reduction of iron is considerably accelerated at 1050?C1100°C, and organic compounds can hardly be found in a ceramic material fired at 1100°C.  相似文献   

8.
Thermal analysis of some sericite clays, from several deposits in Spain, which are not exploited at this time, has been studied. The samples have been previously characterized by mineralogical and chemical analysis. Sericite clays have interesting properties, with implications in ceramics and advanced materials, in particular concerning the formation of mullite by heating. According to this investigation by differential thermal and thermogravimetric analysis (DTA-TG), the sericite clay samples can be classified as: Group (I), sericite–kaolinite clays, with high or medium sericite content, characterized by an endothermic DTA peak of dehydroxylation of kaolinite with mass loss, which overlapped with dehydroxylation of sericite, and Group (II), sericite–kaolinite–pyrophyllite clays, with broader endothermic DTA peaks, in which kaolinite is dehydroxylated first and later sericite and pyrophyllite with the main mass loss, appearing the peaks overlapped. X-ray diffraction analysis of the heated sericite clay samples evidenced the decomposition of dehydroxylated sericite and its disappearance at 1050 °C, with formation of mullite, the progressive disappearance of quartz and the formation of amorphous glassy phase. The vitrification temperature is ~ 1250 °C in all these samples, with slight variations in the temperatures of maximum apparent density (2.41–2.52 g mL?1) in the range 1200–1300 °C. The fine-grained sericite content and the presence of some mineralogical components contribute to the formation of mullite and the increase in the glassy phase by heating. Mullite is the only crystalline phase detected at 1400 °C with good crystallinity. SEM revealed the dense network of rod-shaped and elongated needle-like mullite crystals in the thermally treated samples. These characteristics are advantageous when sericite clays are applied as ceramic raw materials.  相似文献   

9.
《Analytical letters》2012,45(9):1598-1605
Sulfide ores with varied concentrations, including four ore reference materials (zinc, copper, and iron sulfides) and two copper-nickel and iron sulfide samples, were used to develop an improved method for their analysis by X-ray fluorescence. The optimum conditions were established for the fusion of homogeneous stable glass disks. Different weights of silica were added to the samples, which were then fused with a lithium borate flux. The amount of silica varied from 1:20 for samples with low sulfur concentrations to 1:5 for those with high concentrations. The weight ratio of sample (including silica) to lithium tetraborate was 1:14. Lithium nitrate was used as a pre-oxidizing reagent to prevent degradation of platinum–gold crucibles. After pre-oxidation at 580°C for 13 minutes, the temperature was increased to 1100°C for 12 minutes. The relative standard deviations for major and trace elements were generally better than 5% and 10%, respectively.  相似文献   

10.
The present work is focused on thermoanalytical investigations as thermogravimetric analysis (TG) and derivative thermal analysis (DTG), applied for the characterization of some samples collected from archaeological sites (Brasov and Trofeum Traiani) located in different regions of Romania. New informations derived about ceramic technologies concerning raw materials and binding materials (mineralogical components) have been obtained. All these experimental results have been correlated with related techniques as X-ray diffraction (XRD), energy-dispersive X-ray fluorescence (EDXRF) and inductively coupled plasma—atomic emission spectrometry (ICP-AES). By progressive heating in static air atmosphere and in the temperature range of 20–800 °C, all investigated materials exhibit three main successive processes, associated with the dehydration and thermo-oxidative degradations. The rate of the first thermooxidative process, temperatures corresponding to the maximum rate of the second thermooxidative process and shrinkage temperature were associated with the damage of the investigated materials due to environmental impact. Heating also affects the contact between the fine-sized clay matrix and mineral clast fragments, appearing in reaction rims, sometimes showing newly formed phases. The temperature at which ancient ceramics and pottery were fired varies over a wide range (600–800 °C) depending on the type of clay used, although firing temperatures not above 30–400 °C have also been suggested. Clay minerals, as the main material for production of ceramics and pottery, show some characteristic reactions (dehydroxylation, decomposition, transformation) in the course of firing (heating effects) and several thermoanalytical criteria can be used for reconstruction of former production conditions.  相似文献   

11.
Tris(bipyridine)nickel(II) chloride (1) and bis(bipyridine)nickel(II) chloride (2) pyrolize at heating rate of 50 °C/min to a maximum of 450 °C for 24 h under an inert atmosphere of flowing argon gas, to yield size-controlled nickel nanoparticles. Thermogravimetric studies of the complexes (1) and (2) and GC–MS analysis of the trapped volatile matter evolved during thermal degradation of the complexes indicate their clean decomposition pathway to zero-valent nickel. Both heating rate and argon gas flow rate affect purity, particle size, and shape of the particles. X-ray powder diffractometry and atomic force microscopy showed the formation of face-centered cubic (fcc) structured nickel particles having particle size in the range of 3.5–5.0 nm. Magnetic susceptibility measurements suggest nickel nanoparticles to be ferromagnetic in nature characterized by particle size–dependent Curie temperature and high coercivity that is comparable to the bulk iron.  相似文献   

12.
The thermal decomposition of hydronium jarosite and ammoniojarosite was studied using thermogravimetric analysis and mass spectrometry, in situ synchrotron X-ray diffraction and infrared emission spectroscopy. There was no evidence for the simultaneous loss of water and sulfur dioxide during the desulfonation stage as has previously been reported for hydronium jarosite. Conversely, all hydrogen atoms are lost during the dehydration and dehydroxylation stage from 270 to 400 °C and no water, hydroxyl groups or hydronium ions persist after 400 °C. The same can be said for ammoniojarosite. The first mass loss step during the decomposition of hydronium jarosite has been assigned to the loss of the hydronium ion via protonation of the surrounding hydroxyl groups to evolve two water molecules. For ammoniojarosite, this step corresponds to the protonation of a hydroxyl group by ammonium, so that ammonia and water are liberated simultaneously. Iron(II) sulfate was identified as a possible intermediate during the decomposition of ammoniojarosite (421–521 °C) due to a redox reaction between iron(III) and the liberated ammonia during decomposition. Iron(II) ions were also confirmed with the 1,10-phenanthroline test. Iron(III) sulfate and other commonly suggested intermediates for hydronium and ammoniojarosite decomposition are not major crystalline phases; if they are formed, then they most likely exist as an amorphous phase or a different low temperature phases than usual.  相似文献   

13.
Precursor powders for yttrium aluminum garnet (YAG) were synthesized by solution combustion reactions (nitrate–glycine reaction with stoichiometric and sub-stoichiometric amount of fuel) and simple decomposition of nitrate solution. The TG-DTA, FTIR and XRD analyses of the precursors and the typical heat-treated samples were carried out to understand the processes occurring at various stages during heating to obtain phase pure YAG. Precursors from all the reactions exhibited dehydration of adsorbed moisture in the temperature range of 30 to 300°C. The precursor from nitrate–glycine reaction with stoichiometric amount of fuel (precursor- A) contained entrapped oxides of carbon (CO and CO2) and a carbonaceous contaminant. It exhibited burning away of the carbonaceous contaminant and crystallization to pure YAG accompanied by loss of oxides of carbon in the temperature ranges of 400 to 600 and 880 to 1050°C. The precursor from simple decomposition of nitrates (precursor-B) exhibited denitration cum dehydroxylation and crystallization in the temperature ranges of 300 to 600 and 850 to 1050°C. The precursor from nitrate–glycine reaction with sub-stoichiometric amount of fuel (precursor-C) contained entrapped carbon dioxide and exhibited its release during crystallization in the temperature range of 850 to 1050°C. This study established that, in case of metal nitrate–glycine combustion reactions, crystalline YAG formation occurs from an amorphous compound with entrapped oxides of carbon. In case of simple decomposition of metal nitrates, formation of crystalline YAG occurs from an amorphous oxide intermediate.  相似文献   

14.
Understanding the response of drugs and their formulations to thermal stresses is an integral part of the development of stable medicinal products. In the present study, the thermal degradation of two drug samples (cetirizine and simvastatin) was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the cetirizine occurs during two temperature ranges of 165–227 and 247–402 °C. The TG/DTA analysis of simvastatin indicates that this drug melts (at about 143 °C) before it decomposes. The main thermal degradation for the simvastatin occurs during two endothermic behaviors in the temperature ranges of 238–308 and 308–414 °C. The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of both the drug samples was verified. The results showed that as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by ASTM E696 method, the values of activation energy for cetirizine and simvastatin were 120.8 and 170.9 kJ mol?1, respectively. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   

15.
The studies on the synthesis and thermal properties of linear neryl diesters were presented. The linear neryl diesters can be successfully obtained during butylstannoic catalyzed esterification process. The final conversion of nerol and carboxylic groups was higher than 95 % using a stoichiometric molar ratio of reagents in mild conditions. The high yield products were prepared after longer time than previously studied geranyl diesters. It was directly connected with the steric hindrance and lower susceptibility of nerol to esterification process than geraniol. The TG/FTIR/QMS studies proved that the thermal properties and decomposition mechanism of neryl diesters differ considerably in inert and oxidative atmosphere. The diesters were thermally stable up to 200 °C in inert atmosphere. Their decomposition was run as a one-step process. The analyses of the volatile products emitted during their pyrolysis indicated on the ester and O-neryl bonds cleavage. It resulted in the formation of monoterpene hydrocarbons, cyclic acid anhydrides, ketones, or aldehydes. However, the studied compounds were less thermally stable in air than in helium. Their decomposition happened in two steps. The first step ranges from 185–228 °C to almost 326–380 °C with mass loss above 88 %. The formation of acyclic or alicylic monoterpene hydrocarbons, cyclic acid anhydrides, ketones, alkenes, alkanes, carbon dioxide, and water was expected. It indicated on the asymmetrical distrupt of the bonds, partial oxygenation, and decarboxylation of emitted gaseous fragments. The second step of decomposition was observed in temperatures ranges from 380 to above 560 °C. In this step carbon dioxide and water were mainly emitted. It was the result of the oxidation of the residue formed during the fist step.  相似文献   

16.
The cetyltrimethylammonium hydroxide (C16TMAOH) solution was proposed for the preparation of organoclays. Montmorillonite clay was acid activated at different acid/clay (a/c) (in mass) ratios, then treated with alkaline (sodium hydroxide) solution before being reacted with C16TMAOH solution. The acid activation caused a reduction in the number of cation exchange sites, and hence improved the exfoliation of the silicate sheets at higher pH values. The basal spacing increased significantly from 2.20 to 4.01 nm, and depended on the a/c ratios. The acid-activated clays with a/c ratios greater than 0.3 adsorbed significant amounts of C16TMA cations with a basal spacing of 4.01 nm compared with the non-acid-activated montmorillonite (2.51 nm). Meanwhile, the treatment of NaOH solution yielded clays with similar properties to that of the raw used clay. The XRF data, FT-IR, and 29Si MAS-NMR techniques confirmed that the resulting amorphous silica during the acid activation was dissolved, and accompanied by a dramatical reduction in the surface areas. Similar amounts of C16TMA cations were adsorbed, i.e., close to 1 mmol g?1, with a single basal spacing of 2.52 nm, independently of the treated acid-activated clays. The in-situ powder XRD studies revealed that an increase of the basal spacing to 4.20 nm was observed at intermediate temperatures ranging from 50 to 150 °C for organo-acid-activated clays with basal spacing of 4.01 nm, while a continuous decrease of the basal spacing was observed for organoclays with a basal spacing of 2.52 nm. At higher temperatures greater than 250 °C, the decomposition of the surfactant occurs, and the basal spacing decreases to a value of about 1.4 nm.  相似文献   

17.
The products evolved during the thermal decomposition of kaolinite–urea intercalation complex were studied by using TG–FTIR–MS technique. The main gases and volatile products released during the thermal decomposition of kaolinite–urea intercalation complex are ammonia (NH3), water (H2O), cyanic acid (HNCO), carbon dioxide (CO2), nitric acid (HNO3), and biuret ((H2NCO)2NH). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved products CO2, H2O, NH3, HNCO are mainly released at the temperature between 200 and 450 °C with a maximum at 355 °C; (2) up to 600 °C, the main evolved products are H2O and CO2 with a maximum at 575 °C. It is concluded that the thermal decomposition of the kaolinite–urea intercalation complex includes two stages: (a) thermal decomposition of urea in the intercalation complex takes place in four steps up to 450 °C; (b) the dehydroxylation of kaolinite and thermal decomposition of residual urea occurs between 500 and 600 °C with a maximum at 575 °C. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanation have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials and its intercalation complexes.  相似文献   

18.
Zinc ferrite nanocomposite was synthesized via thermal decomposition of zinc acetate and iron nitrate at three different temperatures (350, 450, and 550 °C). The influence of the thermal decomposition of precursors on the formation zinc ferrites was studied by differential thermal gravimetry and thermogravimetry (TG). The TG curve shows two steps for the thermal decomposition with mass loss of 17.3 % at 78 °C and 63.3 % at 315 °C. The prepared zinc ferrites nanocomposite was characterized by X-ray diffraction and scanning electron microscopy. The X-ray diffractograms of ZnFe2O4 shows that a crystalline phase, spinel system is formed. SEM micrograph of the zinc ferrite nanocomposite indicates the formation of uniformly spherical 48-nm nanograins. The properties of the zinc ferrite phase were strongly dependent on their calcinations temperature and molar ratio of precursors.  相似文献   

19.
Thermal modification is one of the environmental friendly wood preservation technologies. During this process, changes of the main woody cell wall components occur, which lead to improved dimensional stability, lower hygroscopicity and improvement in biological durability. Several chemical reactions which occur during thermal treatment of wood caused changes in wood properties. During TG measurements, thermal decomposition reactions, which was not completed during previous thermal modification process, continued in wood samples, meaning that more thermally treated samples exhibited lower mass losses in a certain or whole temperature range up to 600 °C. Therefore, mass loss, obtained within selected temperature range, could be used as a marker of previous thermal treatment. The aim of the present work is to evaluate suitability of a thermogravimetric method (TG) for determination of a degree of thermal treatment of beech wood. On the basis of thermally untreated sample and those which were thermally modified at 180, 190, 200, 210, 215 and 220 °C in the absence of oxygen, respectively, and with known values of mass loss during the modification processes, several calibration curves were constructed. They represent mass loss in a certain temperature range during TG measurement versus mass loss during previous thermal modification. In a temperature range from 130 to 300 °C and from 130 to 320 °C under nitrogen atmosphere, a linear dependence was observed; correlation coefficients R 2 were 0.87 and 0.91, respectively. In wider temperature range and under air atmosphere, lower correlation coefficients were obtained. High correlation coefficient, higher than 0.95, was observed in a temperature range from 25 to 130 °C under both atmospheres. In this region, dehydration due to rehydration of thermally modified samples occurs. The results of this work were compared with those obtained for Norway spruce.  相似文献   

20.
The aim of the study was to design and optimize the complex, two-step heat treatment of Cu–Ni (Mn, Mo) ductile iron. A method for the formation and investigation of austempered ductile iron (ADI) by means of complex two-step and as comparative, standard one-step heat treatments has been developed, using quenching dilatometer. Investigations of proceeding phase transformations using differential dilatometric and DSC analysis supported by microstructural observations, hardness and austenite volume measurements have been carried out. An analysis of the temperature sequence of the ausferrite decomposition in the one-step and two-step ADI was performed, which allowed for the separation and identification of the effects responsible for the carbon-enriched austenite decomposition. A quantitative relationship was established between basic dimensional effects revealed on the differential dilatometric curve of ausferrite decomposition, which enables prognosis and optimization of the parameters of complex ADI heat treatment variants. Verification tests were performed on a stand equipped with salt furnaces enabling a quick transfer of samples from one bath to another without changing their initial temperature. Optimization of the two-step ADI heat treatment with the use of quantitative dilatometric analysis of the ausferrite decomposition, allowed to obtain for the temperature step-down heat treatment 390 °C/15, 20 min ? 270 °C/130 min the excellent mechanical properties, unattainable by means of standard 1-step ADI heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号