首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cluster-continuum models (KOH·nDMSO, n = 1, 5) were used to model the superbasic system “alkali metal hydroxide-dimethyl sulfoxide” within the framework of MP2/6-311++G**/ and B3LYP/6-31G* methods. The KOH molecule surrounded by five DMSO molecules exists as “solvate-loosened” ion pair with elongated K-O distance. It is proposed to consider the “solvate-loosened” ion pair of potassium cation with hydroxide anion in the surroundings of five solvent molecules as the catalytic coordination sphere of the superbasic system KOH-DMSO. Methanol and methanethiol molecules can be incorporated with ease into the first coordination sphere of potassium cation to form methoxide and methanethiolate ions. The possibility of nucleophilic attack of methoxide and methanethiolate ions on acetylene molecule in the first coordination sphere of potassium cation was studied. The model reaction system C2H2-CH3OK-H2O with one DMSO molecule included explicitly to maintain the “solvate-loosened” [CH3O]?...K+ ion pair and additional inclusion of solvent effects within the framework of the IEFPCM continuum model is the most preferable for serial calculations.  相似文献   

2.
The profile of the reaction CH3OH + MOH → CH3OM + H2O in the presence of an alkali (MOH, M = Li, Na, K) was investigated by the ab initio quantum-chemical method for the gas phase (with allowance for the solvent) within the continuum model. The proton transfer and the formation of the alkaline methoxide molecule in MOH/DMSO/CH3OH systems (M = Li, Na, K) in the alkali-methanol pre-reaction complexes can take place without their preliminary dissociation and are barrier-free reactions.  相似文献   

3.
The reaction mechanism of the formation of alkali metal ethynides C2H2 + MOH → C2HM + H2O (M = Li, Na, K) is studied for the gas phase (MP2/6-311++G**//RHF/6-31+G*) and also with regard to the solvent effect of dimethyl sulfoxide (DMSO) included within the continuum model. Among all acetylene complexes with alkali metal hydroxides considered (C2H2·MOH (M = Li, Na, K)), only the complex with KOH is thermodynamically stable in DMSO solution. The formation of this structure results in activation of the acetylene molecule towards electrophilic attack. The formation of alkali metal ethynide in solution is also thermodynamically favorable only in the system with potassium hydroxide of a whole series of metals considered. Further, the ethynide ion can interact in KCCK·HOH systems.  相似文献   

4.
Abstract

The kinetics of the oligomerization of methyl methacrylate (MMA) by methoxide/methanol solutions was studied using gas chromatography techniques. The effects of the type of the alkali metal, [CH OH]/[monomer] ratio, solvent, and initiator concentration were investigated. The rate of conversion using different alkali metal alkoxides was in the order CH3OLi < CH3ONa < CH3OK, but no oligomers higher than the addition product, RO—MMA (n=1), could be obtained by CH3OLL DPn decreased with increasing the [CH3OH]/[monomer] ratio and with lowering of the initiator concentration. Using DMSO as solvent increased the yields of the higher oligomers. The formation of n=1 was reversible, contrary to the formation of the higher oligomers. Some of the rate constants of the various steps of the oligomerization were estimated by taking into account the reversibility of the initiation reaction and assuming steady-state conditions in the concentration of the various anions present in the system.  相似文献   

5.
Synthesis and Characterization of 2‐O‐Functionalized Ethylrhodoximes and ‐cobaloximes 2‐Hydroxyethylrhodoxime and ‐cobaloxime complexes L—[M]—CH2CH2OH (M = Rh, L = PPh3, 1 ; M = Co, L = py, 2 ; abbr.: L—[M] = [M(dmgH)2L] (dmgH2 = dimethylglyoxime, L = axial base) were obtained by reaction of L—[M] (prepared by reduction of L—[M]—Cl with NaBH4 in methanolic KOH) with BrCH2CH2OH. H2O—[Rh], prepared by reduction of H[RhCl2(dmgH)2] with NaBH4 in methanolic KOH, reacted with BrCH2CH2OH followed by addition of pyridine yielding py—[Rh]—CH2CH2OH ( 3 ). Complexes 1 and 3 were found to react with (Me3Si)2NH forming 2‐(trimethylsilyloxy)ethylrhodoximes L—[Rh]—CH2CH2OSiMe3 (L = PPh3, 4 ; L = py, 5 ). Treatment of complex 1 with acetic anhydride resulted in formation of the 2‐(acet oxy)ethyl complex Ph3P—[Rh]—CH2CH2OAc ( 6 ). All complexes 1 — 6 were isolated in good yields (55—71 %). Their identities were confirmed by NMR spectroscopic investigations ( 1 — 6 : 1H, 13C; 1 , 4 , 6 : 31P) and for [Rh(CH2CH2OH)(dmgH)2(PPh3)]·CHCl3·1/2H2O ( 1 ·CHCl3·1/2H2O) and py—[Rh]—CH2CH2OSiMe3 ( 5 ) by X‐ray diffraction analyses, too. In both molecules the rhodium atoms are distorted octahedrally coordinated with triphenylphosphine and the organo ligands (CH2CH2OH and CH2CH2OSiMe3, respectively) in mutual trans position. Solutions of 1 in dmf decomposed within several weeks yielding a hydroxyrhodoxime complex “Ph3P—[Rh]—OH”. X‐ray diffraction analysis exhibited that crystals of this complex have the composition [{Rh(dmg)(dmgH) (H2O)(PPh3)}2]·4dmf ( 7 ) consisting of centrosymmetrical dimers. The rhodium atom is distorted octahedrally coordinated. Axial ligands are PPh3 and H2O. One of the two dimethylglyoximato ligands is doubly deprotonated. Thus, only one intramolecular O—H···O hydrogen bridge (O···O 2.447(9)Å) is formed in the equatorial plane. The other two oxygen atoms of dmgH and dmg2—, respectively, act as hydrogen acceptors each forming a strong (intermolecular) O···H′—O′ hydrogen bridge to the H′2O′ ligand of the other molecule (O···O′ 2.58(2)/2.57(2)Å).  相似文献   

6.
By the DFT B3LYP/6-31G** method the geometry was optimized and IR spectra were calculated of complexes [Mg(DMSO) i (CH3CN)6-i ]2+ (i = 1–6). The values of free energy ΔG in the reaction of ligands substitution in the coordination sphere of the cation were determined. A satisfactory agreement between experimental and calculated values of structural parameters and infrared spectra of free molecules and coordinated to the cation DMSO was obtained. The regularities in the changes of the spectroscopic and structural characteristics of [Mg(DMSO) i (CH3CN)6-i ]2+ complexes at varying their composition were revealed. The frequencies and absolute integral intensities of DMSO bands in the IR spectra of pure liquid, solutions in acetonitrile, and in three-component solutions Mg(ClO4)2-DMSO-CH3CN were measured. A correspondence between the calculated change of the frequency and absolute intensity of the IR bands v(C≡N), v(C-C), v(S=O), and v(SC) of the complexes and the corresponding values in the IR spectra of the solutions with different content of components of binary solvent was found.  相似文献   

7.
The production of dimethyl sulfoxide (DMSO) and dimethyl sulfone (DMSO2) in the dimethyl sulfide (DMS) degradation scheme initiated by the hydroxyl (OH) radical has been shown to be very sensitive to nitrogen oxides (NOx) levels. In the present work we have explored the potential energy surfaces corresponding to several reaction pathways which yield DMSO2 from the CH3S(O)(OH)CH3 adduct [including the formation of CH3S(O)(OH)CH3 from the reaction of DMSO with OH] and the reaction channels that yield DMSO or/and DMSO2 from the CH3S(O2)(OH)CH3 adduct are also studied. The formation of the CH3S(O2)(OH)CH3 adduct from CH3S(OH)CH3 (DMS‐OH) and O2 was analyzed in our previous work. All these pathways due to the presence of NOx (NO and NO2) and also due to the reactions with O2, OH and HO2 are compared with the objective of inferring their kinetic relevance in the laboratory experiments that measure DMSO2 (and DMSO) formation yields. In particular, our theoretical results clearly show the existence of NOx‐dependent pathways leading to the formation of DMSO2, which could explain some of these experimental results in comparison with experimental measurements carried out in NOx‐free conditions. Our results indicate that the relative importance of the addition channel in the DMS oxidation process can be dependent on the NOx content of chamber experiments and of atmospheric conditions. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

8.
The [C4H70]+ ions [CH2?CH? C(?OH)CH3]+ (1), [CH3CH?CH? C(?OH)H]+ (2), [CH2?C(CH3)C(?OH)H]+ (3), [Ch3CH2CH2C?O]+ (4) and [(CH3)2CHC?O]+ (5) have been characterized by their collision-induced dissociation (CID) mass spectra and charge stripping mass spectra. The ions 1–3 were prepared by gas phase protonation of the relevant carbonyl compounds while 4 and 5 were prepared by dissociative electron impact ionization of the appropriate carbonyl compounds. Only 2 and 3 give similar spectra and are difficult to distinguish from each other; the remaining ions can be readily characterized by either their CID mass spectra or their charge stripping mass spectra. The 2-pentanone molecular ion fragments by loss of the C(1) methyl and the C(5) methyl in the ratio 60:40 for metastable ions; at higher internal energies loss of the C(1) methyl becomes more favoured. Metastable ion characteristics, CID mass spectra and charge stripping mass spectra all show that loss of the C(1) methyl leads to formation of the acyl ion 4, while loss of the C(5) methyl leads to formation of protonated vinyl methyl ketone (1). These results are in agreement with the previously proposed potential energy diagram for the [C5H10O]+˙ system.  相似文献   

9.
Three copper(II) complexes, [Cu2(OAc)4L2] · 2CH3OH ( 1 ), [CuBr2L′2(CH3OH)] · CH3OH ( 2a ), and [CuBr2L′2(DMSO)] · 0.5CH3OH ( 2b ) {L = N‐(9‐anthracenyl)‐N′‐(3‐pyridyl)urea and L′ = N‐[10‐(10‐methoxy‐anthronyl)]‐N′‐(3‐pyridyl)urea} have been synthesized by the reaction of L with the corresponding copper(II) salts. Complex 1 shows a dinuclear structure with a conventional “paddlewheel” motif, in which four acetate units bridge the two CuII ions. In complexes 2a and 2b , the anthracenyl ligand L has been converted to an anthronyl derivative L′, and the central metal ion exhibits a distorted square pyramidal arrangement, with two pyridyl nitrogen atoms and two bromide ions defining the basal plane and the apical position is occupied by a solvent molecule (CH3OH in 2a and DMSO in 2b ).  相似文献   

10.
Photocatalysis of CH3OH on the ZnO(0001) surface has been investigated by using temperature-programmed desorption (TPD) method with a 266 nm laser light. TPD results show that part of the CH3OH adsorbed on ZnO(0001) surface are in molecular form, while others are dissociated. The thermal reaction products of H2, CH3·, H2O, CO, CH2O, CO2 and CH3OH have been detected. Experiments with the UV laser light indicate that the irradiation can promote the dissociation of CH3OH/CH3O· to form CH2O, which can be future converted to HCOO- during heating or illumination. The reaction between CH3OHZnand OHad can form the H2O molecule at the Zn site. Both temperature and illumination promote the desorption of CH3· from CH3O·. The research provides a new insight into the photocatalytic reaction mechanism of CH3OH on ZnO(0001).  相似文献   

11.
Two new sodium hydroxyalkoxycarbonylcyclopentadienide salts Na[rac-CpCO2(CHPh)2OH] (1) and Na[(2S,3S)-CpCO2(CHPh)2OH] (2) were prepared by reaction of NaCp with the five-membered cyclic carbonates cis-4,5-diphenyl-1,3-dioxolan-2-one and (4S,5S)-4,5-diphenyl-1,3-dioxolan-2-one. The reaction of these salts with [Rh(NBD)Cl]2 gave [Rh{rac-CpCO2(CHPh)2OH}(NBD)] (3) and (−)-[Rh{(2S,3S)-CpCO2(CHPh)2OH}(NBD)] (4) whose catalytic activity in the hydroformylation of hex-1-ene and styrene has been investigated and compared with that of the previously reported rhodium complexes [Rh{CpCO2(CHR)2OH}(NBD)] (R=H, Me). In addition we also discuss some preliminary results regarding the behavior of these complexes in the hydrogenation of the same substrates. The reactivity of NaCp toward the six-membered cyclic carbonate 1,3-dioxan-2-one has also been studied and it has been found that the reaction leads to two cyclopentadienide anions [CpCO2(CH2)3OH] (5) and [CpCO2(CH2)3OC(O)O(CH2)3OH] (6) in amounts strictly dependent on the carbonate/NaCp stoichiometric ratio.  相似文献   

12.
Four binuclear transition metal complexes: [Cu2L(μ-OCH3)]?·?CH3OH, [Cu2H2L(μ-Cl)Cl2]?·?(CH3OH), [Cu2H2L(μ-Br)Br2]?·?(CH3OH), [(VO)2H2L(μ-Cl)]Cl2?·?(CH3OH) were synthesized by reaction of the Robson-type binucleating ligand H3L (2,6-diformyl-4-tert-butylphenol-bis-(1′-phthalazinylhydrazone)) with Cu(II) acetate, CuCl2, CuBr2 and VOCl2, correspondingly. IR and ESR spectra, elemental analysis, conductivity measurements, magnetochemical study and DFT calculations were used to characterize the ligand and isolated complexes. The ligand is a NNONN donor and its degree of deprotonation varies with the metal salt used for reaction (triply deprotonated form L?3 is observed in reaction with copper(II) acetate, while monodeprotonated form H2L? is found in complexes obtained from metal halides). All complexes contain an endogenous phenoxide bridge and an exogenous methoxide, chloride or bromide bridge. Magnetic data reveal existence of antiferromagnetic interactions between the metal ions (experimental 2J values are ?700, ?73, ?50 and ?190?cm?1, correspondingly). Broken symmetry approach at the UB3LYP/6-31G(d) level was used to theoretically calculate spin-spin coupling between metal centers. Obtained values ?570, ?62, ?53 and ?214?cm?1 are rather close to experimental ones and reproduce their counterrelation. Spin density distribution in the singlet and triplet states of the complexes is discussed.  相似文献   

13.
The reaction profile of noncatalytic vinylation of methanol with acetylene was studied by ab initio quantum-chemical calculations for the gas phase and by calculations using a combined model that took into account the solvent (DMSO) effect. The reaction occurs via the formation of a prereaction complex of the methoxide ion with acetylene; at this stage, the acetylene molecule is already activated with respect to the proton. The observed stereospecific trans-addition in methanol vinylation in the gas phase and solution is provided by the lower activation barrier corresponding to the E structure of the acetylene molecule in the transition state and barrier-free protonation of the carbanion intermediate.  相似文献   

14.
The bimolecular reaction of the CH2CHOH.+ enol ion (m/z 44) with acetaldehyde gives a strongly dominant product,m/z 45, formed mainly by proton transfer from the ion to the molecule. The abundance of the product coming from a H. abstraction reaction from the neutral, albeit more exothermic, is negligible. In order to explain this result, the long lived [CH2CHOH.+, CH3CHO] solvated ion was generated by reaction of the CH2CHOH.+ enol ion with (CH3CHO) n in the cell of a Fourier transform ion cyclotron resonance mass spectrometer. The structure of this solvated ion was clearly established. Labeling indicates that [CH2CHOH.+, CH3CHO], upon low energy collisions, reacts by H. abstraction more rapidly than by H+ transfer to the neutral moiety. This shows that the entropic factors are determinant when the enol ion reacts directly with acetaldehyde.  相似文献   

15.
Cyclodiphosphazanes having donor functionalities such as cis-[tBuNP(OR)]2 (R = C6H4OMe-o (2); R = CH2CH2OMe (3); R = CH2CH2SMe (4); R = CH2CH2NMe2 (5)) were obtained in good yield by reacting cis-[tBuNPCl]2 (1) with corresponding nucleophiles. The reactions of 2-5 with [RuCl26-cymene)]2, [MCl(COD)]2 (M = Rh, Ir), [PdCl2(PEt3)]2 and [MCl2(COD)] (M=Pd, Pt) result in the formation of exclusively monocoordinated mononuclear complexes of the type cis-[{tBuNP(OR)}2MLn-κP] irrespective of the reaction stoichiometry and the reaction conditions. In contrast, 2-5 react with [RhCl(CO)2]2, [PdCl(η3-C3H5)]2, CuX (X=Cl, Br, I) to give homobinuclear complexes. Interestingly, CuX produces both mono and binuclear complexes depending on the stoichiometry of the reactants and the reaction conditions. The mononuclear complexes on treatment with appropriate metal reagents furnish heterometallic complexes.  相似文献   

16.
The possible structures and isomerizations of H2C=C(OH)Li are studied theoretically by the gradient analytical method at RHF/6-31+G level. According to these results, reactions of H2C=C(OH)Li with CH3 + and CH 3 - are investigated thoroughly. When H2C=C(OH)Li reacts with CH 3 + , HzC=C(OH)Li firstly changes from structure1 to structure4, and then combines with CH3 +. In this reaction, the configuration of central carbon is retained. When H2C=C(OH)Li reacts with CH 3 - , structure1 firstly breaks its C-O bond to give contact ion-pair. Then through transition state16 which is similar to structure2, the attack of CH 3 - from the opposite side of-OH replaces-OH group and inverts the configuration of carbenoid carbon atom. All the results show that the ambident reactivity of carbenoid has close relationship with the stability of special structures. Project supported by the National Natural Science Foundation of China (Grant No. 29773025).  相似文献   

17.
R.B. King  L. Borodinsky 《Tetrahedron》1985,41(16):3235-3240
The vinyl Isocyanides 2,4,6-(CH3)3C6H2CHCHNC and (CH3)3CCHCHNC and the new 1,3-dienyl isocyanide CH3CHCH(CH3)-CHCHNC have been prepared from the corresponding aldehydes and methyl isocyanide using a method first developed by Schöllkopf, Stafforst, and Jentsch. 5 The new vinyl isocyanides (CH3)2CCHNC and CH3CHC(CH3)NC have been prepared by the Cu2O-catalyzed isomerization of the corresponding allyl isocyanides The liquid vinyl isocyanides may be characterized by the formation of solid cis-(RNC)2Mo(CO)4 derivatives through reaction with norbornadienetetracarbonylmolybdenum in hexane solution at ambient temperature. Examination of these molybdenum carbonyl complexes by proton and carbon-13 NMR spectroscopy Indicates that the isocyanide carbon atom but not the carbon-carbon double bond of the vinyl 1socyanide ligands is bonded to the molybdenum atom. The proton-decoupled carbon-13 NMR spectra of the vinyl isocyanides, but not their molybdenum carbonyl complexes, indicate coupling of the isocyanide nitrogen to both the isocyanide carbon (1J(C-N)6 Hz. ) and the vinyl carbon bearing the isocyanide group (1J(C-N)11-13 Hz. ) leading to 1:1:1 triplets for these resonances. These vinyl carbonyl resonances are used to estimate the cis-trans isomer ratios in vinyl isocyanides of the type RCHCHNC. Such studies suggest that the formation of vinyl isocyanides by the copper(I) catalyzed isomerization of the corresponding allylic isocyanides is more nearly stereospecific than the formation of vinyl isocyanides by the elimination reaction of the Schollkopf/Stafforst/Jentsch synthetic method.  相似文献   

18.
Equilibrium study on the mixed ligand complex formation of CuII with biguanide(Bg) and glycine (HG), indicated the formation of the complexes: Cu(Bg)2+, Cu(Bg) 2 2+ , Cu(Bg-H)(Bg)+, Cu(Bg-H)2, Cu(Bg)(OH)+, Cu(Bg-H)(OH); Cu(G)+, Cu(G)(OH), Cu(G)2; Cu(G)(Bg)+, Cu(G)(Bg-H); (G)Cu(Bg)Cu(G)2+, (G)Cu(Bg-H)Cu(G)+, and (G)Cu(Bg-2H)Cu(G). From the deprotonation constants of coordinated biguanide (Bg) in the complexes Cu(Bg)(OH)+, Cu(Bg-H)(Bg)+ and Cu(G)(Bg)+, the Lewis basicities of the coordinated ligand species (Bg-H)-, OH- and glycinate (G-) were found to be of the order: (Bg-H)-≫ OH- > G-. Bridging (N1-N4, N2-N5) tetradentate mode of coordination by biguanide species Bg, (Bg-H)- and (Bg2H)2- was indicated from the occurrence of biguanide-bridged dinuclear mixed ligand complexes (G)Cu(Bg)Cu(G)2+, (G)Cu(Bg-H)Cu(G)+, (G)Cu(Bg-2H)Cu(G) in the complexation equilibria.  相似文献   

19.
Electrode reactions of intermediates formed during capture of OH radicals by dimethyl sulfoxide (DMSO) molecules were studied using laser photoemission in aqueous buffer solutions in the pH range from acidic to basic. The results were compared with characteristics of one-electron reduction of methyl radicals generated via photoemission from methyl halides CH3X (X = Cl, I). From these experiments, it was concluded that intermediates in these systems were identical since the primary product of capture of OH radicals by DMSO molecules, i.e., adduct (CH3)2SO. (OH), was spontaneously decomposed to form .CH3 with a time as low as <2 × 10?5 s. Some anomalies were found on time-resolved voltammograms of intermediates in the pH range from weakly basic to weakly acidic and at illumination times of an electrode with UV light T m ≤ 90–300 ms. These features were presumably caused by rather slow formation of organomercury intermediates as interaction products of the components of the system DMSO—OH radical—mercury electrode.  相似文献   

20.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号