首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some new coordination compounds of cadmium(II) and mercury(II) with N,N-bis[(E)-3-(phenylprop)-2-enylidene]propanediamine (L) as a new bidentate Schiff base ligand with general formula MLX2 (X = Cl?, Br?, I?, SCN?, and N3 ?) have been prepared. They were characterized by elemental analysis, FT-infrared (FT-IR) and Ultraviolet–Visible spectra, 1H- and 13C-NMR spectra. The reasonable shifts of FT-IR and NMR spectral signals of the complexes with respect to the free ligand confirm well coordination of ligand and anions(X-) in inner sphere coordination mode. The thermal behavior of the complexes from room temperature to 800 °C shows weight loss by decomposition of the anions and ligand segments in the subsequent steps. The results showed that cadmium complexes have no water molecules (neither as lattice nor as coordinated water) and are decomposed in two temperature steps except about cadmium thiocyanate complex that is decomposed in three steps. Final residual contents of cadmium complexes are suggested to be cadmium oxide or sulfide. Mercury complexes were decomposed in three to four temperature steps. Mercury bromide and azide complexes leave out a little amount of mercury oxide in final, while mercury chloride, iodide, and thiocyanate complexes were found to be completely decomposed without any residual matter.  相似文献   

2.
A new class of surfactant–cobalt(III) complexes of the type trans-[Co(DH)2(OA)X], where DH = dimethylglyoxime, OA = octadecylamine, X = Cl?, Br?, I?, N3 ?, NO2 ?, SCN? or OA, were synthesized and characterized by physicochemical and spectroscopic methods. The critical micelle concentration (CMC) values of these surfactant–cobalt(III) complexes in ethanol solution were obtained by measuring absorption at ~250 nm. Specific conductivity data (at 303–313 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG m 0 , ΔH m 0 and ΔS m 0 ). Steady-state photolysis and cyclic voltammetry of the complexes were studied. The surfactant–cobalt(III) complexes were screened for their antibacterial and antifungal activities against various microorganisms.  相似文献   

3.
Co(II), Ni(II) and Cu(II) chloro complexes of benzilic hydrazide (BH) have been synthesized. Also, reaction of the ligand (BH) with several copper(II) salts, including NO3 ?, AcO?, and SO4 ? afforded metal complexes of the general formula [CuLX(H2O) n nH2O, where X is the anion and n = 0, 1 or 2. The newly synthesized complexes were characterized by elemental analysis, mass spectra, molar conductance, UV–vis, IR spectra, magnetic moment, and thermal analysis (TG/DTG). The physico-chemical studies support that the ligand acts as monobasic bidentate towards metal ion through the carbonyl and hydroxyl oxygen atoms. The spectral data revealed that the geometrical structure of the complexes is square planar for Cu (II) complexes and tetrahedral for Co(II) and Ni(II) complexes. Structural parameters of the ligand and its complexes have been calculated. The ligand and its metal complexes are screened for their antimicrobial activity. The catalytic activities of the metal chelates have been studied towards the oxidative decolorization of AB25, IC and AB92 dyes using H2O2. The catalytic activity is strongly dependent on the type of the metal ion and the anion of Cu(II) complexes.  相似文献   

4.
Trinuclear copper(II) and nickel(II) complexes have been prepared by using Schiff base ligands derived from 1,8-[bis(3-formyl-2-hydroxy-5-methyl) benzyl]-4,11-dimethyl-l,4,8,11-tetraazacyclotetradecane, and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-4,11-dimethyl-l,4,8,11-tetraazacyclotetradecane with aliphatic and aromatic diamines. All the complexes were characterized by elemental and spectroscopic analysis. Electrochemical studies of the copper(II) complexes in DMF solution show three irreversible one electron reduction process around E pc  1 = ?0.59 to ?0.80 V, E pc  2 = ?0.89 to ?1.14 V and E pc  3 = ?1.17 to ?1.29 V, and for nickel(II) complexes it is around E pc  1 = ?0.63 to ?0.77 V, E pc  2 = ?1.20 to ?1.35 V and E pc  3 = ?1.60 to ?1.74 V. ESR spectra and magnetic moments of the trinuclear Cu(II) complexes show the presence of antiferromagnetic coupling. Cryomagnetic investigation of the trinuclear copper(II) complexes show that the observed ?2J values are in the range of 116–178 cm?1. The rate constants for hydrolysis of 4-nitrophenylphosphate by the complexes are in the range of 2.68 × 10?2 to 9.81 × 10?2 min?1. The rate constants values for the catecholase activity of the copper(II) complexes fall in the range of 3.03 × 10?2 to 9.32 × 10?2 min?1. All the complexes.  相似文献   

5.
The complexes [Ni(L1)(pyc)2]·2H2O (1) (L1 = C-meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; Hpyc = pyrazinecarboxylic acid) and [Cu(L2)(H-cpdc)] (2) (L2 = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane; H2-cpdc = cyclopropanedicarboxylic acid) have been synthesized and structurally characterized. The crystal structure of complex 1 shows a distorted octahedral coordination geometry around the nickel(II) center, with four secondary amines in the equatorial positions and two nitrogen atoms of the pyc? ligands in the trans positions. In complex 2, the coordination environment around the copper(II) center is a Jahn–Teller distorted octahedron with four Cu–N bonds and two axial Cu–O bonds. The electronic spectra, electrochemical and TGA behavior of the complexes are significantly affected by the nature of the axial pyc? and H-cpdc? ligands.  相似文献   

6.
Mononuclear copper(II) complexes of 1,2,4-triazole-based Schiff base macrocyclic hydrazones, III and IV, have been reported. The prepared amorphous complexes have been characterized by spectroscopic methods, electron spray ionization mass spectrometry, and elemental analysis data. Electrochemical studies of the complexes in DMSO show only one quasi-reversible reduction wave at +0.43 V (ΔE = 70 mV) and +0.42 V (ΔE = 310 mV) for III and IV, respectively, which is assigned to the Cu(II) → Cu(I) reduction process. Temperature dependence of magnetic susceptibilities of III and IV has been measured within an interval of 2–290 K. The values of χM at 290 K are 1.72 × 10?3 cm3 mol?1 and 1.71 × 10?3 for III and IV, respectively, which increases continuously upon cooling to 2 K. EPR spectra of III and IV in frozen DMSO and DMF were also reported. The trend g|| > g⊥ > ge suggests the presence of an unpaired electron in the dx2?y2 orbital of the Cu(II) in both complexes. Furthermore, spectral and antimicrobial properties of the prepared complexes were also investigated.  相似文献   

7.
Tridentate chelate complexes M[LX?·?2H2O], where M?=?Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have been synthesized from the Schiff base L?=?N-[1-(3-aminopropyl)imidazole]salicylaldimine and X?=?Cl. Microanalytical data, UV-Vis, magnetic susceptibility, IR, 1H-NMR, mass, and EPR techniques were used to confirm the structures. Electronic absorption spectra and magnetic susceptibility measurements suggest square-planar geometry for copper complex and octahedral for other metal complexes. EPR spectra of copper(II) complex recorded at 300?K confirm the distorted square-planar geometry of the copper(II) complex. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species and one fungus. The electrochemical behavior of the copper complex was studied by cyclic voltammetry.  相似文献   

8.
New complexes of type [M(HL)(CH3COO)(OH2)m]·nH2O (where M:Co, m = 2, n = 2; M:Ni, m = 2, n = 1.5; M:Zn, m = 0, n = 2.5 and M:Cd, m = 0, n = 0; H2L:5-bromo-N,N′-bis-(salicylidene)-o-tolidine) have been synthesized and characterized by microanalytical, IR, UV–Vis-NIR and magnetic data. Electronic spectra of Co(II) and Ni(II) complexes are characteristic for an octahedral stereochemistry. The IR spectra indicate a chelate coordination mode for mono-deprotonated Schiff base and a bidentate one for acetate ion. The thermal transformations are complex according to TG and DTA curves including dehydration, acetate decomposition and oxidative degradation of the Schiff base. The final product of decomposition is the most stable metallic oxide.  相似文献   

9.
The synthesis and characterization of four new solid complexes, Cu(tolf)2L2 (tolf = tolfenamate, L = 2-pyridylmethanol (2-pyme), 3-pyridylmethanol (3-pyme), nicotinamide (na)) and Cu(tolf)2(dena)2(H2O)2 (dena = N,N-diethylnicotinamide) is reported. The composition and stereochemistry as well as the mode for ligand coordination have been determined by elemental analysis, IR, electronic and EPR spectra. The carboxyl group of the tolfenamate anion coordinates to the Cu(II) atom as an unidentate or as a chelating ligand. The EPR spectra of the powdered solids are consistent with spin S = ½. The crystal structure of Cu(tolf)2(dena)2(H2O)2 has been determined at 293 K. The Cu(II) atom has a tetragonal–bipyramidal arrangement (CuO4N2). The spectroscopic data indicate that each copper(II) atom in Cu(tolf)2L2 has a tetragonal–bipyramidal environment built up by bidentate unsymmetrically coordinate tolfenamates and unidentate N-donor atom ligands.  相似文献   

10.
Three mononuclear nickel(II) and copper(II) complexes, [Ni(L)2(py)2] (1), [Ni(L)2(DMF)(H2O)] (2), and [Cu(L)2] (3), where HL = 2-((Z)-(4-methoxyphenylimino)methyl)-4,6-dichlorophenol, py = pyridine and DMF = N,N-dimethylformamide, have been synthesized and their structures determined by single crystal X-ray analysis. Complexes 1–3 crystallized in the monoclinic system of the space groups C2/c, P21/n, and P21/c, respectively. The crystal structures of 1 and 2 present an octahedral geometry at the metal center and 3 shows a square-planar geometry. The FT-IR spectra, UV–vis spectra, and magnetic susceptibility measurements agree with the observed crystal structures. EPR spectra indicate a dx2–y2 ground state (g|| > g > 2.0023 and A|| > A) for 3 at RT and LNT. The results of simultaneous TG-DTA analyses of 1 and 3 showed the final degradation products are NiO for 1 and CuO for 3. The Schiff base (HL) behaves as monobasic bidentate ligand possessing N and O donor atoms. Electrochemical properties for the complexes are similar and involve two irreversible redox processes. Complex 3 exhibits the ability to inhibit jack bean urease, although its Schiff base has no ability to inhibit urease. Complex 1 exhibits more active scavenging effects against O2? than HL, 2 and 3 under the same conditions. Antibacterial screening activities of these complexes were also investigated.  相似文献   

11.
The reduction reaction of the Cu(II)–pitn complex (pitn = 1,3-di(pyridine-2-carboxaldimino)propane) by decamethylferrocene [Fe(Cp*)2] was examined in acetonitrile. The observed pseudo-first-order rate constants exhibited saturation kinetics with increasing excess amount of [Fe(Cp*)2]. Detailed analyses revealed that the reaction is controlled by a structural change prior to the electron transfer step, rather than a conventional bimolecular electron transfer process preceded by ion pair (encounter complex) formation. The rate constant for the structural change was estimated to be 275 ± 13 s?1 at 298 K (?H* = 33.3 ± 1.0 kJ·mol?1, ?S* = 86 ± 5 J·mol?1·K?1), which is the fastest among gated reactions involving CuN4 complexes. It was confirmed by EPR measurement and Conflex calculations that the dihedral angle between the two N–N planes is significantly large (40°) in solution whereas it is merely 17.14° in the crystal.  相似文献   

12.
A novel chained Cu(II) complex was synthesized from trichloroacetato copper(II) and pyridine in ethanol solvent, and characterized by elemental analysis and infrared (IR) spectroscopy. The special crystal structure of the Cu(II) complex was determined by X-ray single-crystal diffraction. The results indicate that a chained structure of the Cu(II) complex formed through intermolecular hydrogen bonds. Cu(CCl3COO)2(C5H5N)2(H2O) was monoclinic, with unit cell P21/c and cell parameters as follows: a = 14.389(3) Å, b = 7.1911(14) Å, c = 23.107(8) Å, V = 2,257.5(10) Å3, Z = 4, M r = 564.51, D c = 1.661 mg/m3, T = 293(2) K, F(000) = 1,124, μ(Mo Kα) = 1.704 mm?1, R = 0.0984, and ωR = 0.2791. The electrochemical behavior of the Cu(II) complex on a glassy carbon working electrode determined by cyclic voltammetry showed the electrochemical activity of the title compound at 0.2 to ?0.3 V (versus SCE) in NH3–NH4Cl buffer solution (pH 9.2), and the redox peak current of the complex had a good linear relationship with the square root of the scan rate in the range 0.02–0.2 V/s.  相似文献   

13.
New complexes ML(CNS)·nH2O [M = Ni, n = 0.5; M = Cu, n = 4.5; M = Zn, n = 0.5, HL: 6-mercapto-(1,4,8,11-tetraazaundecanyl)-6-carboxylic acid)] have been synthesised, chemical analysed, and characterised by different spectroscopic techniques (IR, UV–Vis–NIR, 1H NMR, EPR, ESI–MS), and magnetic measurements. Based on the IR spectra a dinuclear structure with the 1,3-CSN coordination was proposed for Ni(II) and Cu(II) complexes. The dinuclear structure of Cu(II) complex is also consistent with both magnetic behaviour and EPR spectrum. According to TG, DTG and DTA curves the thermal transformations are complex processes, including dehydration, Mannich base oxidative degradation and thiocyanate decomposition. The final product of decomposition is the most stable metallic oxide, as XRD data indicates. The new complexes were also screened for their microbicidal and antibiofilm properties.  相似文献   

14.
The structure and EPR spectra of copper(II) complexes with bis(salicylidene)hydrozones of N-benzoyl-L-aspartic and N-benzoyl-L-glutamic acids have been described. The compounds have been studied by chemical and thermal analyses, IR spectroscopy, and EPR spectroscopy. The molecular and crystal structure of the copper(II) complex with bis(salicylidene)hydrozone of N-benzoyl-L-aspartic acid (H4L) of composition [Cu2L · 2Py] · 2CH3OH · H2O has been determined by X-ray single-crystal diffraction. The crystals are monoclinic: a = 10.3316(7) Å, b = 16.7552(9) Å,c = 11.0137(6) Å, β = 105.758(3)°, space group P21, Z = 2. The complex has a polymeric structure composed of alternating copper-containing binuclear fragments bound to each other either via phenoxy bridges or via an aliphatic spacer (the Cu…Cu distances are 3.471 Å and 8.939 Å, respectively). The EPR spectra of the solutions of the complexes under study shows an isotropic signal comprising seven HFS lines due to two equivalent copper nuclei with the spin Hamiltonian parameters g = 2.115–2.122 and a Cu = (36.1–36.9) × 10?4 cm?1, which indicates the reaization of weak exchange coupling of the paramagnetic centers.  相似文献   

15.
Two tetranuclear complexes, [M(H3L)]4·X (1, M = Cu, X = 4,4′-dpdo; 2, M = Ni, X = DMF, H5L = 2-[(3,5-dibromo-2-hydroxybenzyl) amino]-2-(hydroxymethyl)propane-1,3-diol, 4,4′-dpdo is 4,4′-bipyridine-N,N′-dioxide, DMF = N,N′-dimethyl formamide), have been synthesized and characterized by elemental analysis, IR and X-ray single-crystal diffraction. Compound 1 features a centrosymmetric tetranuclear copper cluster which further constructed a 1D chain through a tetra-acceptor hydrogen bonds of 4,4′-dpdo molecule. Compound 2 having a P21 /n space group also exhibits a tetranuclear nickel cluster with a cubane topology in which the central Ni(II) ion and oxygen atoms from H3L2? occupy the alternate vertices of the cube. Magnetic properties of 1 and 2 in the 2–300 K have also been discussed. The tetranuclear cubanes cores display dominant ferromagnetic interactions.  相似文献   

16.
Nickel(II) and copper(II) complexes of two unsymmetrical tetradentate Schiff base ligands [Ni(Me-salabza)] (1), [Cu(Me-salabza)] (2) and [Ni(salabza)] (3), {H2salabza = N,N′-bis[(salicylidene)-2-aminobenzylamine] and H2Me-salabza = N,N′-bis[(methylsalicylidene)-2-aminobenzylamine]}, have been synthesized and characterized by elemental analysis and spectroscopic methods. The crystal structures of 2 and 3 complexes have been determined by single crystal X-ray diffraction. Both copper(II) and nickel(II) ions adopt a distorted square planar geometry in [Cu(Me-salabza)] and [Ni(salabza)] complexes. The cyclic voltammetric studies of these complexes in dichloromethane indicate the electronic effects of the methyl groups on redox potential.  相似文献   

17.
One isomer, LC of the isomeric Me8[14]anes, LA, LB and LC; on reaction with Ni(NCS)2 produces a six coordinate octahedral diisothiocyanato complex, [NiLC(NCS)2]. This complex undergoes axial substitution reactions with the small ligands to yield corresponding monosubstituted derivatives having general formula [NiLC(NCS)X] whereas X = Cl, Br, I, NO2 or NO3. The complexes have been characterized on the basis of analytical, spectroscopic, magnetic and conductance data. The structure of [NiLC(NCS)2] (triclinic, space group P?1, α = 8.0421(17) Å, β = 8.9085(18) Å, χ = 9.687(2) Å, α = 67.561(3) Å, β = 82,896(4) Å, ζ = 598.7(2) Å3, = 2, Dc = 1.352 mg/m3, μ(Mo ) = 1.003 mm?1) was confirmed by X-ray crystallography.  相似文献   

18.
A new series of macrocyclic metal complexes have been synthesized and characterized by the template condensation reaction of 1,8-diaminonaphthalene and dimedone in presence of divalent transition metals, resulting into the formation of the macrocyclic complexes of the type: [M(C36H36N4)X2]; where M = Co(II), Ni(II), Cu(II), Zn(II) and X = Cl?, NO3 ?, CH3COO?. The synthesized macrocyclic complexes have been characterized with the aid of elemental analysis, conductance measurements, magnetic susceptibility measurements, electronic, infrared, NMR, Mass and ESR spectral studies. The complexes were also investigated for their fluorescence activity. Electronic spectra along with magnetic moments suggest the six coordinated octahedral geometry for all these complexes. The low value of molar conductance indicates them to be non-electrolyte. The in vitro antimicrobial activities of these macrocyclic complexes have also been investigated against some bacterial strains and yeast. Further minimum inhibitory concentration shown by these complexes against these pathogens was compared with MIC shown by standard antibiotic and standard antifungal drug.  相似文献   

19.
The structure and the EPR spectra of copper(II) coordination compounds with acyldihydrazones of N-benzenesulfonyl-L-aspartic acid and salicylaldehyde (2-hydroxyacetophenone) were described. The compounds were studied by chemical and thermal analyses, IR spectroscopy, and EPR. The molecular and crystal structures of copper(II) complexes with N-benzenesulfonyl-L-aspartic acid bis(salicylidene)hydrazone (H4L1) [Cu2L1 · 2Py] · 1.5 H2O was determined by X-ray diffraction. The crystals are triclinic: a = 10.4714(4) Å, b = 12.9702(5) Å, c = 14.6187(9) Å, α = 104.763(2)°, β = 93.082(2)°, γ = 111.4240(10)°, space group P \(\bar 1\), Z = 2. The binuclear complexes containing copper cations whose coordination polyhedra are connected by an aliphatic spacer (Cu...Cu, 8.669 Å) are additionally linked by phenoxy bridges (Cu...Cu, 3.398 Å). The EPR spectra of these compounds in solutions exhibit an isotropic signal of seven HFS lines due to two equivalent copper ions with the spin Hamiltonian parameters g = 2.115?2.120, a Cu = (35.5?38.0) × 10?4 cm?1, which is indicative of weak exchange interactions between the paramagnetic sites.  相似文献   

20.
The thermal decomposition of copper(II) complexes with salicylaldehyde S-methylthiosemicarbazone of general formula Cu(HL)X·nH2O (X=Py+NO3, NCS, 0.5SO4) and [Cu(L)NH3]·H2O was investigated in air atmosphere in the interval from room temperature to 1000°C. Decomposition of the complexes occurred in several successive endothermic and exothermic processes, and the residue was in all cases CuO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号