首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
Hungary is rich in spring waters. A survey studying the naturally occurring alpha emitter radionuclides in 30 frequently visited and regularly consumed spring waters was conducted out in the Balaton Upland region of Hungary.226Ra, 224Ra, 234U, 238U and 210Po activity concentrations were determined by using alpha spectrometry after separation from matrix elements. Average concentration (mBq L− 1) of 226Ra, 224Ra, 234U, 238U and 210Po in the spring waters is varied from 2.1 to 601, from < 1.1 to 65.4, from 3.9 to 741.9, from < 0.44 to 274.3 and from 2 to 15.2 respectively. In most cases radioactive disequilibrium was observed between uranium and radium isotopes. The doses for the analyzed samples of spring water are in the range 3.59–166.73 μSv y− 1 with an average 18.2 μSv y− 1 .This is well below the 100 μSv y− 1 reference level of the committed effective dose recommended by WHO. Only one water sample had a dose higher than 100 μSv y− 1, mainly due to the contribution from radium (226Ra, 224Ra) and 210Po isotopes. This study provides important information for consumers and authorities about their internal radiological exposure risk from spring water intake.  相似文献   

2.
Due to the importance of water in human life, its quality must be strictly controlled; so simple and reliable analytical methods must be available. For this purpose a rapid procedure for the determination of uranium isotopes in natural water samples with elevated salinity was adopted. It was tested in 16 water samples from Upper and Lower Silesia Regions in Poland. Water samples had salinity in a range of 290–26,925 mg l− 1.In water samples the concentrations of 234U and 238U ranged from 2.07 to 52.08 mBq l– 1 and from 2.18 to 43.38 mBq l– 1 respectively, while 235U level was below MDA (0.7 mBq l− 1).The isotopic ratio of 234U/238U varies in the range from 0.949 to 3.344 in all investigated waters which means that there is usually no radioactive equilibrium between the parent nuclide 238U and its daughter product 234U.These results do not show a correlation between total dissolved solids (TDS) values and concentration of dissolved uranium isotopes.Committed effective dose for adults due to uranium intake as a result of drinking water usage was in range of 0.15–3.29 µSv y− 1 with an average value of 1.09 µSv y− 1 far below the 100 µSv y− 1 WHO recommendation.  相似文献   

3.
Nearshore surface sediments from various locations of the West Coast of India were leached by saturated ammonium carbonate solution for the extraction of uranium isotopes. The reagent chosen was found to have high efficiency for leaching uranium isotopes without attacking the mineral core of the sediment particle. The activity ratios of234U/238U are in the range of 1.11 to 1.14 and the activity ratios of235U/235U are in the range of 0.045 to 0.047. The respective activity ratios in leachates, and residues after removal of surface organic matter from the sediment particles by treatment with hydrogen peroxide and 0.05M HCl, revealed disequilibrium between238U and234U only in the surface organic matter. The activity ratios of234U/238U and235U/238U have also been determined in some seawater samples from the Arabian Sea.  相似文献   

4.
The234U/238U and235U/238U ratios from uranium compounds by -spectrometry technique have been obtained. Ten commercially available uranium reagents were analyzed. The well-separated peaks corresponding to uranium isotopes are evident, providing an energy spectrum of the -particles of uranium isotopes. It was found that some commerical uranium salts were depleted in234U and235U.  相似文献   

5.
The determination of isotopes of uranium by alpha spectrometry in different environmental components (sediments, soil, water, plants and phosphogypsum) is presented and discussed in this paper. The alpha spectrometry is a very convenient and good technique for activity concentration of natural uranium isotopes (234U, 235U, 238U) in environmental samples and provides the most accurate determination of isotopic activity ratios between 234U and 238U. The analysis were provided information about possible sources of high concentrations of uranium in the examined sites determined by anthropogenic sources. The calculation of values 234U/238U in all analyzed samples was applied to identifying natural or anthropogenic uranium origin. Activity concentration of uranium isotopes in analyzed environmental samples shows that measurement of uranium levels is of great importance for environmental and safety assessment especially in contaminated areas (phosphogypsum waste heap).  相似文献   

6.
The smear samples of the penetrator were analyzed for the determination of the uranium composition. The obtained relative composition (m/m) of uranium isotopes in all the smear samples is in the range of 99.76-99.78% for 238U, 0.000659-0.000696% for 234U, 0.213-0.234% for 235U, and 0.00274-0.00328% for 236U, showing characteristics of depleted uranium (DU). The uranium concentrations in Kosovo soil and water samples as well as biological samples were investigated. It was found that the uranium concentrations in the Kosovo soil samples are in the range of 11.3-2.26·105 Bq·kg-1 for 238U, 10.3-3.01·104 Bq·kg-1 for 234U, 0.60-3251 Bq·kg-1 for 235U, and £0.019-1309 Bq·kg-1 for 236U. The obtained activity ratios are in the range of 0.112-1.086 for 234U/238U, 0.0123-0.1144 for 235U/238U, and 0-0.0078 for 236U/238U, indicating the presence of DU in about 77% of the surface soil samples. At a specific site, the DU inventory in the surface soil is about 140 mg·cm-2, which is 1.68·106 times higher as the estimated mean DU dispersion rate in the region. The uranium concentrations in Kosovo lichen, mushroom, bark, etc., are in the range of 1.97-4.06·104 Bq·kg-1 for 238U, 0.48-5158 Bq·kg-1 for 234U, 0.032-617 Bq·kg-1 for 235U, and £0.019-235 Bq·kg-1 for 236U with mean activity ratios of 0.325±0.0223 for 234U/238U, of 0.0238±0.0122 for 235U/238U, and 0.0034±0.0028 for +U/238U, indicating the presence of DU in the entire sample. On the contrary, the uranium concentrations in Kosovo water samples are low, compared with the water samples collected in central Italy, indicating the presence of negligible amount of DU. The uranium isotopes in Kosovo waters do not constitute a risk of health at the present time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Radiochemical results of U isotopes (234U, 235U and 238U) and their activity ratios are reported for well waters as local sources of drinking waters collected from the ten settlements around the Semipalatinsk Nuclear Test Site (SNTS), Kazakhstan. The results show that 238U varies widely from 3.6 to 356 mBq/L (0.3–28.7 μg/L), with a factor of about 100. The 238U concentrations in some water samples from Dolon, Tailan, Sarzhal and Karaul settlements are comparable to or higher than the World Health Organization’s restrictive proposed guideline of 15 μg (U)/L. The 234U/238U activity ratios in the measured water samples are higher than 1, and vary between 1.1 and 7.9, being mostly from 1.5 to 3. The measured 235U/238U activity ratios are around 0.046, indicating that U in these well waters is of natural origin. It is probable that the elevated concentration of 238U found in some settlements around the SNTS is not due to the close-in fallout from nuclear explosions at the SNTS, but rather to the intensive weathering of rocks including U there. The calculated effective doses to adults resulting from consumption of the investigated waters are in the range 1.0–18.7 μSv/y. Those doses are lower than WHO and IAEA reference value (100 μSv/y) for drinking water.  相似文献   

8.
Groundwater in arid and semiarid regions is vital resource for many uses and therefore information about concentrations of uranium isotopes among other chemical parameters are necessary. In the study presented here, distribution of 238U and 235U in groundwater of four selected locations in the southern Arabian peninsula, namely at two locations within the United Arab Emirates (UAE) and two locations in Oman are discussed. The analyses of the uranium isotopes were performed using ICP-MS and the results indicated a range of concentrations for 235U and 238 U at 3–39 ng L?1 (average: 18 ng L?1) and 429–5,293 ng L?1 (average: 2,508 ng L?1) respectively. These uranium concentrations are below the higher permissible WHO limit for drinking water and also comparable to averages found in groundwater from similar aquifers in Florida and Tunisia. Negative correlation between rainfall and uranium concentrations suggests that in lithologically comparable aquifers, climate may influence the concentration of uranium in subtropical to arid regions.  相似文献   

9.
Activity concentrations of 234U, 238U and 226Ra in mineral waters were determined on the basis of nine water bottling facilities using alpha particle spectrometry. The mineral water samples were collected from three geographic regions of Turkey. The radiochemical separation used in the uranium analysis is based on the isolation of uranium radioisotopes from other radionuclides such as Th, Am, Pu and Np using UTEVA resin. Alpha sources were prepared using electrodeposition method. The activity concentration of 226Ra was determined after deposition on a membrane using BaSO4 co-precipitation method. The activity concentrations (mBq L?1) of 226Ra, 238U and 234U ranged from <0.56 to 165, from <0.42 to 439 and from <0.42 to 464, respectively. The measured activity concentrations were used for the calculation of the average total annual effective ingestion doses for children and adults. The committed effective doses were calculated for three different scenarios according to mineral water consumption rate. In the most extreme scenario (for age group 12–17), all water samples except MW1 and MW2 cause annual committed effective doses below the reference level (0.1 mSv year?1) recommended by World Health Organization (WHO).  相似文献   

10.
The aim of this work was to calculate the values of the 234U/238U activity ratio in natural environment (water, sediments, Baltic organisms and marine birds from various regions of the southern Baltic Sea; river waters (the Vistula and the Oder River); plants and soils collected near phosphogypsum waste heap in Wi?linka (Northern Poland) and deer-like animals from Northern Poland. On the basis of the studies it was found that the most important processes of uranium geochemical migration in the southern Baltic Sea ecosystem are the sedimentation of suspended material and the vertical diffusion from the sediments into the bottom water. Considerable values of the 234U/238U are characterized for the Vistula and Oder Rivers and its tributaries. The values of the 234U/238U activity ratio in different tissues and organs of the Baltic organisms, sea birds and wild deer are varied. Such a large variation value of obtained activity ratios indicates different behavior of uranium isotopes in the tissues and organisms of sea birds and wild animals. This value shows that uranium isotopes can be disposed at a slower or faster rate. The values of the 234U/238U activity ratio in the analyzed plants, soils and mosses collected in the vicinity of phosphogypsum dumps in Wi?linka are close to one and indicate the phosphogypsum origin of the analyzed nuclides. Uranium isotopes 234U and 238U are not present in radioactive equilibrium in the aquatic environment, which indicates that their activities are not equal. The inverse relationship is observed in the terrestrial environment, where the value of the of the 234U/238U activity ratio really oscillates around unity.  相似文献   

11.
Radioactivity measurements were carried out in 26 groundwater samples from Tunisia. Activity concentrations of uranium were studied by radiochemical separation procedures followed by alpha spectrometry and that for radium isotopes by gamma-ray spectrometry.The results show that, the concentrations in water samples range from 1.2 to 69 mBq/L.1, 1.3 to 153.4 mBq/L, 2.0 to 1630.0 mBq/L and 2.0 to 1032.0 mBq/L for 238U, 234U, 226Ra and 228Ra, respectively. The U and Ra activity concentrations are low and similar to those published for other regions in the world. The natural radioactivity levels in the investigated samples are generally increased from mineral waters through therapeutic to the spring waters.The results show that a correlation between total dissolved solids (TDS) values and the 226Ra concentrations was found to be high indicating that 266Ra has a high affinity towards the majority of mineral elements dissolved in these waters. High correlation coefficients were also observed between 226Ra content and chloride ions for Cl?–Na+ water types. This can be explained by the fact that radium forms a complex with chloride and in this form is more soluble.The isotopic ratio of 234U/238U and 226Ra/234U varies in the range from 0.8 to 2.6 and 0.6 to 360.8, respectively, in all investigated waters, which means that there is no radioactive equilibrium between the two members of the 238U series. The fractionation of isotopes of a given element may occur because of preferential leaching of one, or by the direct action of recoil during radioactive decay.The annual effective doses due to ingestion of the mineral waters have been estimated to be well below the 0.1 mSv/y reference dose level.  相似文献   

12.
A time-saving and sensitive method for monitoring low concentration (activities) of 210Pb, 232Th, and 230Th and 238U, 234U, and 235U in water samples has been developed. Through the combination of co-precipitation and extraction chromatography by 3M RAD disks and UTEVA (Eichrom) columns effective radiochemical separation of the analytes was carried out. Thorium and uranium activities were determined by alpha spectrometry and lead activity by LSC, respectively. The minimal detectable activities obtained were 0.6?Bq?m?3 for uranium, 0.29?Bq?m?3 for thorium, and 2.5?Bq?m?3 for 210Pb. More than 150 different waters were analysed for uranium content and only 30 for lead and thorium. The investigations are still in progress.  相似文献   

13.
Activity concentrations of 238U, 235U and 234U were determined in different sources of drinking water at the Obuasi gold mines and its surrounding areas in Ghana. Water samples collected from the mines and its surrounding areas were analyzed using direct gamma-ray spectrometry and neutron activation analysis. The 234U/238U and 235U/238U ratios were calculated and the mean values range from 1.27 to 1.38 and from 0.044 to 0.045 respectively. The average 234U/238U ratio was from 1.27 for groundwater to 1.38 for treated water, demonstrating the lack of equilibrium. The average 235U/238U activity ratio is 0.045, indicating that only natural uranium was detected in the samples investigated.  相似文献   

14.
The effect of sediment size, pH, temperature and conductivity on the transfer of uranium from sediment to water has been studied. The uranium concentration and the234U/238U,235U/238U activity ratios were measured in water, sediments and suspended matter sampled from Jucar River, using low level alpha-spectrometry. Distribution factors were obtained from these measurements. A more detailed sampling was done in the neighbourhood of the Cofrentes Nuclear Plant (Valencia, Spain). Total uranium activity,234U/238U activity ratio and distribution factors for234U and238U were found to vary with pH. Leaching and dilution, which depend on pH and salinity, are the probable mechanisms for these changes.  相似文献   

15.
234U, 238U, 226Ra, and 228Ra were analyzed in 14 Korean hot spring waters. Uranium was extracted with mixture of extractive scintillation cocktail containing HDEHP and 234U, 238U were analyzed with LSC. Radium isotopes were separated using Ba coprecipitation method and counted with LSC and 228Ra was also analyzed its daughter 228Ac with HPGe γ-detector. Among them 226Ra was ranged <0.01–0.155 Bq/L and 228Ra is below detection limit <0.1 Bq/L. And also, uranium content was ranged <0.01–49.7 μg/L and 234U/238U ratio was ranged 0.69–1.17.  相似文献   

16.
Activities of 238U, 234U, 228Ra, 226Ra, and 224Ra as well as total α- and β-activities of 23 bottled spring, mineral and therapeutic waters produced and distributed in southern and central Poland are presented. The activities vary from a few tenth to a few mBq·L−1 for uranium and to several hundred mBq·L−1 for radium isotopes. The activities of 40K were calculated from chemical analyses of potassium and checked for several mineral waters by gamma-spectrometer coupled with an HPGe detector. Positive correlation between water mineralization and activities of 40K, 226Ra, as well as total alpha- and total beta-activities were observed. The radiological annual doses were calculated for all investigated waters and for different human age groups assuming the consumption of 1 liter of water per day. The calculated committed effective dose rate from uranium and radium isotopes resulting from consumption of the investigated waters exceeds the recommended value of 0.1 mSv per year in seventeen cases for infants and in one case for adults.  相似文献   

17.
We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 616). The uranium in this series of SRM glasses is a combination of isotopically natural uranium in the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. However, other than atom percent 235U, little information is available for the remaining glasses. We present atom percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in NIST 610-616.  相似文献   

18.
High-resolution alpha-particle spectrometry was performed on three uranium materials enriched in 235U. Besides the 235U peaks, separate peaks belonging to impurity traces of 234U could be quantified. Relying on the isotopic composition of the uranium, as determined by mass spectrometry, the ratio of the half-lives of 238U and 235U was determined via the activity ratio of 234U and 235U in the materials. As an intermediate link, the 234U/238U half-life ratio was taken from published mass spectrometric analyses of ‘secular equilibrium’ uranium material. The resulting half-life ratio T 1/2(238U)/T 1/2(235U) = 6.351±0.031 is in agreement with the commonly adopted half-life values determined by Jaffey et al.  相似文献   

19.
Radionuclides of the 238U series (226Ra, 210Pb, 234Th and 234U), 235U series (227Ac and 231Pa) and 232Th series (228Th and 228Ra) series were measured by High Resolution Gamma Spectrometry system in twenty-five uranium ore samples from underground uranium deposits in the Singhbhum Shear Zone of Eastern India. The activity concentrations were observed to vary within a wide range in most of the deposits, as is the case in most rocks of crustal origin. The uranium ore from these deposits were not of high ore grade (U concentrations ranged from 0.015 to 0.082%). Activity ratios of key daughter–parent pairs from the decay chains, viz. 226Ra/238U, 226Ra/210Pb, 231Pa/235U, 227Ac/235U, 230Th/238U, 234U/238U, 226Ra/230Th and 228Th/228Ra indicated migration/accumulation of uranium and radium in some samples. The 226Ra/230Th ARs suggested that the deposits were not closed to groundwater movement for a maximum time period of 8ky. Thiel plot of the 234U/238U vs. 230Th/238U activity ratios indicated uranium accumulation and complex processes of uranium redistribution.  相似文献   

20.
The surface leaching of the labile component of uranium has been carried out in estuarine sediments of Zuari river in Goa. The measurements of alpha activities of238U,235U and234U in the leachates indicated a remarkable anomaly between the activities of238U and234U. The activity ratios of234U/238U in these leachates have been found to be in the range of 1.10 to 1.14. However, the activity ratios of235U/238U have been found to be 0.045 which is close to that in natural uranium. It has also been observed that the anomaly between238U and234U exists only on the surface organic layers of the backwater sediments of the Zuari river.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号