首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, Eu3+-doped Ca3(P x V1 ? x O4)2 (x = 0.1, 0.4, 0.7) nanophosphors were synthesized in the presence of sodium dodecyl benzene sulfonate (SDBS). The products present interesting and regular morphologies under the mild conditions. For Ca3(P x V1 ? x O4)2: Eu3+, they have the similar phase and their morphologies vary with the content ratio of P to V. Furthermore, the luminescence behavior of Eu3+ has been investigated in this one kinds of matrices. In Ca3(P x V1 ? x O4)2: Eu3+, the 5 D 0-7 F 2 emissions of Eu3+ were the strongest, indicating that the Eu3+ site is without inversion symmetry, the host compositions with different molar ratio of P to V have; great influence on the luminescent performance. Among those products, The value of I 615/I 593 for Eu3+ in Ca3(P0.7V0.3O4)2 host lattice is the biggest. The substitution of PO 4 3? for VO 4 3? increase the ratio of surface Eu cations as well as the value of I 615/I 593 of Eu3+.  相似文献   

2.
Two new compounds, (H2en)3(H2enMe)4(H3O){CuI[MoV 6O12(OH)3(HPO4)(PO4)3]2}?·?6H2O (1) and (H2enMe)4{CuICuII[MoV 6O12(OH)3(PO4)(HPO4)2(H2PO4)]2}?·?3H2O (2), were hydrothermally synthesized and characterized by elemental analysis, IR, TGA, and single-crystal X-ray diffraction analysis. Crystallographic analysis reveals that 1 is constructed from cluster anions {CuI[MoV 6O12(OH)3(HPO4)(PO4)3]2}15?, protonated organic amines, and water molecules. Each cluster is bridged through hydrogen bonds to form a 3-D supermolecular structure. For 2, {CuI[MoV 6O12(OH)3(PO4)(HPO4)2(H2PO4)]2}11? are connected by CuII cations to form an infinite chain. The formation of 1 and 2 reveals that organoamines influence the structures of the crystals.  相似文献   

3.
The electron paramagnetic resonance (EPR) technique has been used to study the Mn2+ paramagnetic impurity complexes in synthetic struvite (MgNH4PO4β6H2O) and the zinc isomorph (ZnNH4PO4β6H2O). EPR of VO2+ ion complexes in vanadyl doped crystals of the zinc isomorph of struvite has also been studied. Two differently oriented, but otherwise identical complexes of both Mn2+ ion and VO2+ ion are found in these crystals. The spin Hamiltonian parameters indicate a large orthorhombic distortion of the [Mn2+(H2O)6] octahedra and an axial symmetry of the vanadyl complexes. The results indicate that in both manganese and vanadyl complexes, the metal ions have covalent bonding with the ligands.  相似文献   

4.
Reduced Clusters with Remarkable Topological and Electronic Properties of the Type of [V18O42(X)]n? (X = SO4, VO4) with Td-Symmetry and Related Clusters [V(18—p)As2pO42(X)]m? (X = SO3, SO4, H2O; p = 3, 4) The novel cluster-compounds Na6[V18O42H9(VO4)] · 21 H2O, (NH4)8[V18O42(SO4)] · 25 H2O, K6[V15As6O42(H2O)] · 8 H2O, (NH4)6[V14As8O42(SO3)], (NH4)6[V14As8O42(SO4)] and [N(CH3)3]4[4V14As8042(H20)] were prepared and characterized by IR- and UV/Vis/NIR-spectroscopy, magnetic measurements and complete crystal structure analysis. For structural data see Inhaltsübersicht. Topological relations to the rhombicuboctahedron spanned by 24 0-atoms of the genuine hypothetical a-Keggin ion, at which the square planes are capped by V?O or As2O groups, are discussed. Of particular interest are the ?extended”? Keggin ions [V18O42(X)]n- (X = SO4 VO4), (formaly derived from the hypothetical genuine a-Keggin ion by addition of six V?O groups) which have quite different electron populations in spite of the same structure of their cluster shells.  相似文献   

5.
Dicaesium divanadium trioxide phosphate hydrogenphosphate, Cs2V2O3(PO4)(HPO4), (I), and dicaesium tris[oxidovanadate(IV)] hydrogenphosphate dihydrate, Cs2[(VO)3(HPO4)4(H2O)]·H2O, (II), crystallize in the monoclinic system with all atoms in general positions. The structures of the two compounds are built up from VO6 octahedra and PO4 tetrahedra. In (I), infinite chains of corner‐sharing VO6 octahedra are connected to V2O10 dimers by phosphate and hydrogenphosphate groups, while in (II) three vanadium octahedra share vertices leading to V3O15(H2O) trimers separated by hydrogenphosphate groups. Both structures show three‐dimensional frameworks with tunnels in which Cs+ cations are located.  相似文献   

6.
Extraction of vanadium(V) with 8-quinolinol into chlorobenzene is discussed. Three dimeric species are shown to be responsible for the extraction: 2VO3- + 4(HOx)o α (V2O3Ox4)o + 2OH-; log Kex,1 = -1.60 ± 0.10 2VO3- + 4(HOx)o + H+ + ClO4- α (V2O3H(Ox)4 · ClO4)o + 2OH-; log Kex,2 = 1.55 ± 0.10 2VO3- + 4(HOx)o + 2H+ + 2ClO4- α (V2O2Ox4 · 2ClO4)o + 2OH-; log Kex,3 = 2.65 ± 0.10 The vanadium(V) complex of 8-quinolinol has also been studied by thermogravimetry and i.r. and visible spectroscopy; an oxo-bridged dimeric structure is postulated. In contrast to 8-quinolinol, 2-methyl-8-quinolinol gives a monomeric vanadium(V) complex under the usual experimental conditions.  相似文献   

7.
Amorphous calcium hydroxyapatite was examined by vibrational spectroscopy (Raman and infra-red (IR)) and quantum chemical simulation techniques. The structures and vibrational (IR, Raman and inelastic neutron scattering) spectra of PO43− ion, Ca3(PO4)2, [Ca3(PO4)2]3, Ca5(PO4)3OH, CaHPO4, [CaHPO4]2, Ca3(PO4)2·H2O, Ca3(PO4)2·2H2O and Ca3(PO4)2·3H2O clusters were quantum chemically simulated at ab initio and semiempirical levels of approximation. A complete coordinate analysis of the vibrational spectra was performed. The comparison of the theoretically simulated spectra with the experimental ones allows to identify correctly the phase composition of the amorphous calcium hydroxyapatite and related materials. The shape of the bands in the IR spectra of the hydroxoapatite can be used in order to characterize the structural properties of the material, e.g., the PO43− ion status, the degree of hydrolysis of the material and the presence of hydrolysis products.  相似文献   

8.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXII. New Orthophosphates of Divalent Chromium — Mg3Cr3(PO4)4, Mg3, 75Cr2, 25(PO4)4, Ca3Cr3(PO4)4 and Ca2, 00Cr4, 00(PO4)4 Solid state reactions via the gas phase led in the systems A3(PO4)2 / Cr3(PO4)2 (A = Mg, Ca) to the four new compounds Mg3Cr3(PO4)4 ( A ), Mg3.75Cr2.25(PO4)4 ( B ), Ca3Cr3(PO4)4 ( C ), and Ca2.00Cr4.00(PO4)4 ( D ). These were characterized by single crystal structure investigations [( A ): P21/n, Z = 1, a = 4.863(2) Å, b = 9.507(4) Å, c = 6.439(2) Å, β = 91.13(6)°, 1855 independend reflections, 63 parameters, R1 = 0.035, wR2 = 0.083; ( B ): P21/a, Z = 2, a = 6.427(2) Å, b = 9.363(2) Å, c = 10.051(3) Å, β = 106.16(3)°, 1687 indep. refl., 121 param., R1 = 0.032, wR2 = 0.085; ( C ): P‐1, Z = 2, a = 8.961(1) Å, b = 8.994(1) Å, c = 9.881(1) Å, α = 104.96(2)°, β = 106.03(2)°, γ = 110.19(2)°, 2908 indep. refl., 235 param., R1 = 0.036, wR2 = 0.111; ( D ): C2/c, Z = 4, a = 17.511(2) Å, b = 4.9933(6) Å, c = 16.825(2) Å, β = 117.95(1)°, 1506 indep. refl., 121 param., R1 = 0.034, wR2 = 0.098]. The crystal structures contain divalent chromium on various crystallographic sites, each showing a (4+n)‐coordination (n = 1, 2, 3). For the magnesium compounds and Ca2.00Cr4.00(PO4)4 a disorder of the divalent cations Mg2+/Cr2+ or Ca2+/Cr2+ is observed. Mg3.75Cr2.25(PO4)4 adopts a new structure type, while Mg3Cr3(PO4)4 is isotypic to Mg3(PO4)2. Ca3Cr3(PO4)4 and Ca2.00Cr4.00(PO4) 4 are structurally very closely related and belong to the Ca3Cu3(PO4)4‐structure family. The orthophosphate Ca9Cr(PO4)7, containing trivalent chromium, has been obtained besides C and D .  相似文献   

9.
The reactivity of the [MoV2O4]2+ dinuclear unit with the [O3P(C(CH3)(OH))PO3]4? etidronate ligand has been investigated. Three complexes have been isolated and characterized by IR spectroscopy, elemental analysis and single crystal X-Ray diffraction studies. Structural determination of the tetranuclear compound (CN3H6)6[(MoV2O4)2(O3P(C(CH3)O)PO3)2]·12H2O (1) revealed that the hydroxo group of the etidronate ligand can be deprotonated in presence of MoV even in acidic media. It follows that its coordination mode thus differs from that of the methylenediphosphonate ligand [O3P(CH2)PO3]4?, which reactivity with MoV has been previously widely studied. In contrast, no such deprotonation of the hydroxo group is observed in the (NH4)18[(MoV2O4)6(OH)6(O3P(C(CH3)(OH))PO3)6]·35H2O complex 2. This species contains a dodecanuclear core analogous to the one previously found in the [(MoV2O4)6(OH)6(O3PCH2PO3)6]18? methylenediphosphonato polyanion. In 2, six interconnected {(MoV2O4)(O3P(C(CH3)(OH))PO3)} units form a cyclohexane-like ring in a chair conformation. In the (CN3H6)18Na3[(MoV2O4)7(O3P(C(CH3)(OH))PO3)7(CH3COO)7]·5CH3COONa 52H2O compound 3, seven {(MoV2O4)(O3P(C(CH3)(OH))PO3)(CH3COO)} units are connected, forming an almost planar tetradecanuclear wheel. This compound represents the largest homometallic MoV polyoxometalate cyclic system reported to date. Finally, 31P NMR studies revealed that only complex 1 is stable in aqueous solution.  相似文献   

10.
A new iron(III)/vanadium(III) phosphate, K3[Fe3.26V0.74(OH)O(PO4)4(H2O)2]·2H2O (1), has been obtained by hydrothermal synthesis and characterized by single crystal X-ray diffraction, Scanning electron microscopy–energy dispersive X-ray spectroscopy, Inductively coupled plasma atomic emission spectroscopy (ICP), thermogravimetric analysis, and FTIR spectroscopy. Single crystal X-ray diffraction reveals a 3D open framework (monoclinic, space group P21/n, a?=?9.6391(7)?Å, b?=?9.8063(7)?Å, c?=?9.7268(7)?Å, β?=?100.71(1)°, and V?=?903.38(11)?Å3). This structure presents FeIII and VIII in a 4.4?:?1?M ratio with the metal ions in two different crystallographic sites. Both metallic centers have distorted octahedral environments, linked by PO4 tetrahedra, forming channels along the a-axis. The asymmetric unit of K3[Fe3.26V0.74(OH)O(PO4)4(H2O)2]·2H2O presents a {M4(OH)O(PO4)4(H2O)2}3? anionic entity, charge balanced by three K+, which are located within the channels. It is also possible to distinguish M4O2 units whose MIII polyhedra are linked by vertex and edges.  相似文献   

11.
The First Vanadium(III) Borophosphate: Synthesis and Crystal Structure of CsV3(H2O)2[B2P4O16(OH)4] CsV3(H2O)2[B2P4O16(OH)4] was prepared under mild hydrothermal conditions (T = 165 °C) from mixtures of CsOH(aq), VCl3, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure was determined by X‐ray single crystal methods (monoclinic; space group C2/m, No. 12): a = 958.82(15) pm, b = 1840.8(4) pm, c = 503.49(3) pm; β = 110.675(4)°; Z = 2. The anionic partial structure contains oligomeric units [BP2O8(OH)2]5–, which are built up by a central BO2(OH)2 tetrahedron and two PO4 tetrahedra sharing common corners. VIII is octahedrally coordinated by oxygen of adjacent phosphate tetrahedra and OH groups of borate tetrahedra as well as oxygen of phosphate tetrahedra and H2O molecules, respectively (coordination octahedra VO4(OH)2 and VO4(H2O)2). The oxidation state +3 for vanadium was confirmed by measurements of the magnetic susceptibility. The trimeric borophosphate groups are connected via vanadium centres to form layers with octahedra‐tetrahedra ring systems, which are likewise linked via VIII‐coordination octahedra. Overall, a three‐dimensional framework constructed from VO4(OH)2 and VO4(H2O)2 octahedra as well as BO2(OH)2 and PO4 tetrahedra results. The structure contains channels running along [001], which are occupied by Cs+ in a distorted octahedral coordination (CsO4(H2O)2).  相似文献   

12.
Thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies on uranium doped calcium phosphate yielded mechanistic information on the observed glow peaks at 365, 410 and 450 K. TSL spectral studies of the glow peaks showed that UO2 2+ acts as the luminescent center. Electron paramagnetic resonance studies on gamma-irradiated samples revealed that the predominant radiation induced centers are H0, PO4 2-, PO3 2- and O- ion. Studies on the temperature dependence studies of the EPR spectra of samples annealed to different temperatures indicate the role of H0 and PO4 2- ions in the main glow peak at 410 K.  相似文献   

13.
The first transition metal iodato peroxido complex, K3[V2O2(O2)4(IO3)]·H2O (I), was prepared by crystallization from the KVO3 — KIO3 — H2O2 — H2O — ethanol (HNO3) solution. The dinuclear anion is immediately decomposed in aqueous solution; the 51V NMR spectrum exhibits signals corresponding to [VO(O2)2(H2O)]?, [V2O2(OH)(O2)4]3? and H2VO4 ? species only. The IR and Raman spectra contain all characteristic bands of the VO(O2)2 group and the coordinated IO3 ? ligand. Based on the positions of bands assigned to the vibrations of the VO(O2)2 groups a pentagonal pyramidal arrangement around the vanadium atoms can be supposed. The crystal structure was solved from X-ray synchrotron powder data by direct space method and refined by energy minimization in the solid state employing a hybrid PBE0 functional. This crystal and molecular structure, has confirmed the presence of hexacoordinated vanadium atoms and revealed asymmetric dinuclear structure of the [V2O2(O2)4(IO3)]3? ion. The coordination spheres of vanadium atoms are different — the IO3 ? anion is coordinated only to one vanadium center. A thermal analysis of the complex confirmed the presence of water molecules in the crystal structure and revealed a considerable stability of the dehydrated complex.   相似文献   

14.
Mixed vanadate phosphates in the systems MZr2(VO4) x (PO4)3 ? x , where M is an alkali metal, were synthesized and studied by X-ray diffraction, electron probe microanalysis, and IR spectroscopy. Substitutional solid solutions with the structure of the mineral kosnarite (NZP) are formed at the compositions 0 ≤ x ≤ 0.2 for M = Li; 0 ≤ x ≤ 0.4 for M = Na; 0 ≤ x ≤ 0.5 for M = K; 0 ≤ x ≤ 0.3 for M = Rb; and 0 ≤ x ≤ 0.2 for M = Cs. Apart from the high-temperature NZP modification, lithium vanadate phosphates LiZr2(VO4) x (PO4)3 ? x with 0 ≤ x ≤ 0.8 synthesized at temperatures not exceeding 840°C crystallize in the scandium tungstate type structure. The crystal structures of LiZr2(VO4)0.8(PO4)2.2 (space group P21/n, a = 8.8447(6) Å, b = 8.9876(7) Å, c = 12.3976(7) Å, β = 90.821(4)○, V = 985.4(1) Å3, Z = 4) and NaZr2(VO4)0.4(PO4)2.6 (space group $R\bar 3c$ = 8.8182(3) Å, c = 22.7814(6) Å, V = 1534.14(1) Å3, Z = 6) were refined by the Rietvield method. The framework of the vanadate phosphate structure is composed of tetrahedra (that are statistically occupied by vanadium and phosphorus atoms) and ZrO6 octahedra. The alkali metal atoms occupy extra-framework sites.  相似文献   

15.
《Solid State Sciences》2000,2(1):99-107
Manganese orthovanadate Mn3(VO4)2 single crystals were grown for the first time from a flux of MnO/V2O5/MoO3. The flux and oxygen partial pressure used are the key factors for the crystal growth and prevention of the oxidation of Mn2+ and the reduction of V5+ during the crystallization process. The reduction and oxidation chemistry of Mn3(VO4)2 was studied. Mn3(VO4)2 is isostructural with magnesium orthovanadate Mg3(VO4)2, orthorhombic, space group Cmca, a=6.247(1) Å, b=11.728(2) Å, c=8.491(2) Å and Z=4, as determined by single crystal X-ray diffraction. Because it is a Mn2+ deficient spinel structure there are two-dimensional sheets of Mn2+O6 octahedra within the structure which show unusual ferrimagnetic properties.  相似文献   

16.
New Compounds with Garnet Structure. VI. Vanadates The preparation of vanadate-garnets of the following three types is reported: (I) {Na3}[B2III](V3)O12 (BIII = Cr, Sc), (II) {LiCa2}[B2II](V3)O12 (BII = Mg), (III) {Ca2AIII}[Li2] (V3)O12 (AIII = In, Sc). The Cr-compound of type (I) decomposes above 690°C into a mixture of Cr2O3 and NaVO3. The analogous Fe-compound decomposes in a similar way already at 400°C; therefore the preparation by solid state reaction is not possible. Employing larger BIII-ions (Y, Yb, Lu) no garnets of type (I), but mixtures of BIIIVO4 (zircon structure) and Na3BIIIV2O8 are formed. Garnets of type (II) do not exist, when BII are Co and Ni. Mixtures of {Ca3}[LiBII](V3)O12 (garnet structure), LiBIIVO4 (spinel structure) and B3II(VO4)2 are formed. With type (III) for AIII = Y reaction occurs forming a mixture of YVO4, Ca3(VO4)2 and Li3VO4.  相似文献   

17.
Eu3+ luminescence is studied in apatite-related phosphate BiCa4(PO4)3O. Compositions of the formula Bi1−xEuxCa4(PO4)3O [x=0.05, 0.1, 0.3, 0.5, 0.8 and 1.0] are synthesized and they are isostructural with parent BiCa4(PO4)3O. Room temperature photoluminescence shows the various transitions 5D07FJ(=0,1,2) of Eu3+. The emission results of compositions with different Eu3+ content show the difference in site occupancy of Eu3+ in Bi1−xEuxCa4(PO4)3O. The intense 5D0-7F0 line at 574 nm for higher Eu3+ content is attributed to the presence of strongly covalent Eu-O bond that is possible by substituting Bi3+ in the Ca(2) site. This shows the preferential occupancy of Bi3+ in Ca(2) site and this has been attributed to the 6s2 lone pair electrons of Bi3+. This is further confirmed by comparing the emission results with La0.95Eu0.05Ca4(PO4)3O.  相似文献   

18.
Triclinic LiVPO4F and monoclinic Li3V2(PO4)3 are synthesized through a soft chemical process with mechanical activation assist, followed by annealing. In this process, ascorbic acid is used as reducing agent as well as carbon source. The as-prepared samples are coated with amorphous carbon. XPS analysis results show the expected valency states of ions in LiVPO4F and Li3V2(PO4)3. The electrochemical properties of the prepared LiVPO4F/C and Li3V2(PO4)3/C cathodes are evaluated. The as-prepared LiVPO4F/C cathode shows an initial discharge specific capacity of 140?±?3 mAh?g?1 at 30 mA?g?1 in the voltage range of 3.0~4.4 V, compared with that of 138?±?3 mAh?g?1 possessed by Li3V2(PO4)3/C. Both samples exhibit good cycle performance at different current densities. The capacity delivered by LiVPO4F remains 95.5 and 91.7 % of its initial discharge capacity after 50 cycles at 150 and 750 mA?g?1, respectively, while 97.4 and 90.6 % for Li3V2(PO4)3/C. But the rate capability of LiVPO4F/C is not so good compared with as-prepared Li3V2(PO4)3/C.  相似文献   

19.
(NH4)2PO3H, H2O crystallizes in the monoclinic system, space group P21/c, with a = 6.322(1) Å, b = 8.323(1) Å, c = 12.676(1) Å, β = 98.84(1) and Z = 4. The structure was refined to R = 0.022 based on 853 independent X-Rays intensities. Improved dimensions of the tetrahedral PO3H2? ion have been obtained: P?H = 1.34(2) and P?O = 1.514(2) Å. The geometry of this ion is compared with that of PO3F2? and SO32? ions and we find a decrease of the volume: VF? > VH+ > Vlone pair.  相似文献   

20.
Two polyoxometalate-based inorganic metal-organic hybrid supramolecular complexes [Cu(2,2′-bpy)2]2[VIV 2MoV 5MoVI 7O38(PO4)] (1) (2,2′-bpy?=?2,2′-bipyridine) and [Cu(2,2′-bpy)2]2[MoVMoVI 11O36(PO4)]?·?3H2O (2), have been hydrothermally prepared and structurally characterized by single-crystal X-ray diffraction. Both complexes are constructed from polyoxoanions (the bivanadyl capped α-Keggin polymolybdate anion [VIV 2MoV 5MoVI 7O38(PO4)]4? for 1 and the reduced 12-molybdophosphate anion [MoVMoVI 11O36(PO4)]4? for 2) and copper(II) complex cations [Cu(2,2′-bpy)2]2+, forming two-dimensional (2D) layer network structures, in which the polyoxoanion and the complex fragment cation connect with each other through Cu?···?Opolyoxoanion short contact weak interactions, which mediate ferromagnetic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号