首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mass spectra of 5-hydroxy-, 5-methoxy-, 5-ethoxy- and 5-propoxy-2,2′-bipyridyls are reported. The fragmentation proposals are supported by high resolution mass measurements and metastable transitions.  相似文献   

2.
The mass spectrum of 2,2′-selenodipyridine obtained by electron impact is reported. The base peak in the spectrum is due to the C5H4N+ ion formed principally by rupture of the central bonds. The molecular ion gives rise to a peak of 50% of the intensity of the base peak. Other fragmentations include loss of H, Se and CSe from the molecular ion and HCN from the M-1 ion.  相似文献   

3.
2,2′-Diketospirilloxanthin and 2,2′-diketobacterioruberin have been prepared via the corresponding 15,15′-dehydro compounds by condensation of 15,15′-dehydroapo-4,4′-carotenedial (C30) with 3-methoxy-(resp. 3-hydroxy)-3-methyl-2-butanone. 2,2′-Diketospirilloxanthin was identical with natural P 518.  相似文献   

4.
The base peak in the mass spectrum of 2,2′-iminodipyridine is due to the M-1 ion. There are several minor fragmentation routes from the molecular ion but the principal pathway involves rupture of the central bonds. J. Heterocyclic Chem., 14, 1103 (1977)  相似文献   

5.
The mass spectra of 2,2′-bipyridyl-5-carboxylic acid and 2,2′-bipyridyl-5-sulphonic acid obtained by electron impact are described. The principal initial fragmentation routes from the molecular ion of the carboxylic acid involve loss of CO, CN˙, HCN, CO2, OH˙ and H2O. From the molecular ion of the sulphonic acid the principal fragmentations are accompanied by loss of HCN, O3, SO2 and SO3.  相似文献   

6.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

7.
Confromational Behaviour of Dimethyl-2,2-′-dipyridyl Ligands. Crystal Structure of 4,6-Dimethyl-2,2′-dipyridyl-dicarbonylnickel(0) 4,6-Dimethyl-2,2′-dipyridyl-dicarbonyl-nickel (O) crystallizes in the monoclinic space group P21/c with the lattice constants a = 7.275 (1)Å, b = 17.954 (4)Å, c = 10.627 (2)Å, β = 105.3° and 4 formula units in the unit cell. The coordination geometry of the nickel atom is tetrahedral. The torsion angle between the pyridyl rings is 4.3°. Quantum chemical calculations with the NDDO method resulted in an energy difference of 87.3 kJ mol?1 between the cis and trans structure of 3, 6-dimethyl-2, 2′-dipyridyl. The preparation of the analogous 3, 6-dimethyl-2, 2′-dipyridyl complex was not successful.  相似文献   

8.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

9.
The reaction of N‐methyl‐2,2′‐diphenolamine 1 and 2,2′‐diphenolamine 2 with some diorganotin(IV) oxides [R1/2SnO: R1 = Me, n‐Bu, t‐Bu and Ph] led to the syntheses of diorgano[N‐methyl‐2,2′‐diphenolato‐O,O′,N]tin (IV) 3–6 and diorgano[2,2′‐diphenolato‐O,O′,N]tin (IV) 7–9 . All compounds (except 7 ) studied in this work were characterized by 1H, 13C, 119Sn NMR, infrared, and mass spectroscopy. Their 119Sn NMR data show that the tin atom is tetracoordinated in CDCl3 but penta and hexacoordinated in DMSO‐d6. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 133–139, 1999  相似文献   

10.
Vibrational Spectra of Complexes of Gold Trichloride with 2,2′-Dipyridne and 4,4′-Dipyridine, Dipyridine and 4,4′-Dipyridine By reaction of Au2Cl6 with 2,2′-Dipyridine and 4,4′-Dipyridine, respectively, the complexes [AuCl2(2,2′-Dipy)][AuCl4] (I) and [AuCl2(4,4′-Dipy)]Cl (II) are obtained. IR and Raman spectra show that (I) has a complex chelate structure, whereas (II) is polymeric with cis-configuration of the ligands.  相似文献   

11.
The syntheses of polyethynyl-substituted 2,2′-bithiophenes 2 and related 5,5′-dicarbaldehyde derivatives 1 are described. The treatment of easily available polybrominated 2,2′-bithiophenes 3 and 2,2′-bithiophene-5,5′-dicarbaldehydes 4 with phenyl or (trimethylsilyl)acetylene in the presence of PdII and CuI in (i-Pr)2NH yields substituted polyethynyl-2,2′-bithiophene compounds. The Me3Si protecting groups can be removed by protodesilylation under basic conditions to give the corresponding terminal ethynyl groups. These polyethynyl-bithiophenes could be interesting precursors for the synthesis of macrocycles with interesting properties.  相似文献   

12.
The condensation reaction of 2,2′‐diamino‐4,4′‐dimethyl‐6,6'‐dibromo‐1,1′‐biphenyl with 2‐hydroxybenzaldehyde as well as 5‐methoxy‐, 4‐methoxy‐, and 3‐methoxy‐2‐hydroxybenzaldehyde yields 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyl ( 1a ) as well as the 5‐, 4‐, and 3‐methoxy‐substituted derivatives 1b , 1c , and 1d , respectively. Deprotonation of substituted 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls with diethylzinc yields the corresponding substituted zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls ( 2 ) or zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyls ( 3 ). Recrystallization from a mixture of CH2Cl2 and methanol can lead to the formation of methanol adducts. The methanol ligands can either bind as Lewis base to the central zinc atom or as Lewis acid via a weak O–H ··· O hydrogen bridge to a phenoxide moiety. Methanol‐free complexes precipitate as dimers with central Zn2O2 rings.  相似文献   

13.
The mass spectra of 6-chloro- and 6-bromo-2,2′-bipyridyls are reported. The principal fragmentation route from the molecular ions involves loss of the halogen group to give the M-1 ion of 2,2′-bipyridyl which gives rise to the base peak in the spectra. Loss of HCN before loss of Cl occurs to a small extent with 6-chloro-2,2′-bipyridyl.  相似文献   

14.
Formylation of 2,2′,5′,2′-terfuran ( 1 ) with N-methylformanilide and phosphorus oxychloride gave 5-formyl-2,2′,5′,2′-terfuran ( 2 ) and 5,5′-diformyl-2,2′5′,2′-terfuran ( 3 ). Reduction of 2 and 3 afforded 5-hydroxymethyl-2,2′,5′,2′-terfuran ( 4 ) and 5,5′ dihydroxymethyl-2,2′,5′,2′-terfuran ( 5 ), respectively. Terfuran 1 reacted with phenylmagnesium bromide to give 5-(phenylhydroxymethyl)-2,2′,5′,2′-terfuran ( 6 ), and was carbonated to 5-carboxy 2,2′,5′,2′-terfuran ( 7 ) and 5,5′-dicarboxy-2,2′,5′,2′-terfuran ( 8 ). Bromination of 1 with N-bromosuccinimide gave 5,5′-dibromo 2,2′,5′,2′-terfuran ( 9 ).  相似文献   

15.
Unexpected ejections of CH3NO2/[˙CH3 + ˙NO2], N2O4/[˙NO2 + ˙NO2] and CH3OCH3/[˙CH3 + ˙OCH3] were observed from the molecular ions of 2-methoxy-2′-nitrodiphenylamine, 2,2′-dinitrodiphenylamine and 2,2′-dimethoxydiphenylamine, respectively, under electron impact conditions owing to proximity effects. In other competing fragmentation pathways, novel proximity effects triggered by the ortho interactions leading to the unusual eliminations of [˙CH3 + H2O] from M of 2-methoxy-2′-nitrodiphenylamine and HNO3/[˙NO2 + ˙OH] from M of 2,2′-dinitrodiphenylamine were observed. Evidence for the interpretation of the main fragmentation pathways was obtained from the metastable ion spectra and high-resolution mass spectrometry. Confirmation of the structures assigned to the ions was provided by collision-activated dissociation mass-analysed ion kinetic energy spectra.  相似文献   

16.
β-D-Arabinofurano[1′,2′:4,5]oxazolo-s-triazin-4-one-6-thione ( 7b ) and its t-butyldimethylsilyl protected counterpart 7a were synthesized by treating the appropriate 2-amino-β-D-arabinofurano[1′,2′:4,5]-2-oxazoline with ethoxycarbonyl isothiocyanate. These 2,2′-anhydro-s-triazine nucleosides were then subjected to alkylation under similar reaction conditions. Alkylation of 3′,5′-bis(O-t-butyldimethylsilyl)-β-D-arabinofurano[1′,2′:-4,5]oxazolo-s-triazin-4-one-6-thione ( 7a ) provided the targeted S-alkylated nucleosides, i.e., the C6-SCH3 ( 9a ), C6-SCH2-CH = CH2 ( 10a ), and C6-S-CH2-C = CH ( 11a ), in reasonable yields. Attempted deprotection of these nucleosides failed. In order to circumvent this problem, 7b was alkylated with the same reagents. In each case, instead of the expected S-alkylated anhydronucleosides, a mixture of the 5-N-alkylanhydro-s-triazine-4,6-dione and 5-N-alkylanhydro-s-triazin-4-one-6-thione derivatives were obtained. The 2,2′-anhydro linkage of 7a was also found to be more stable than the s-triazine ring to mild base. Basic conditions displaced the C6-sulfur substituent and eventually caused ring opening of the s-triazine aglycone.  相似文献   

17.
The single‐crystal X‐ray structures of dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylate, C14H12N2O4, and the copper(I) coordination complex bis(dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylato‐κ2N,N′)copper(I) tetrafluoroborate, [Cu(C14H12N2O4)2]BF4, are reported. The uncoordinated ligand crystallizes across an inversion centre and adopts the anticipated anti pyridyl arrangement with coplanar pyridyl rings. In contrast, upon coordination of copper(I), the ligand adopts an arrangement of pyridyl donors facilitating chelating metal coordination and an increased inter‐pyridyl twisting within each ligand. The distortion of each ligand contrasts with comparable copper(I) complexes of unfunctionalized 2,2′‐bipyridine.  相似文献   

18.
[Cu(I) {6,6′-bis(bromomethyl)-2,2′-bipyridine}2](PF6) complexes were used as metallo-supramolecular initiators for the polymerization of 2-oxazolines resulting in defined polymers with a central 6,6′-disubstituted 2,2′-bipyridine unit. The living character of the polymerization was demonstrated with the linear relationship between the weight-average molecular weight w and the [monomer]/[initiator] ratio as well as in the synthesis of block copolymers. The metal ions could be removed resulting in uncomplexed polymers with a free central metal binding unit.  相似文献   

19.
The syntheses of the five 2,2′: 6′,2″‐terpyridine (tpy) ligands 5 – 9 functionalized in the 4′‐position with a hydrazone substituent RR′C?N? NH (R=R′=Me; R=H, R′=4‐BrC6H4, 4‐O2NC6H4, 4‐MeOC6H4, or 3,5‐(MeO)2C6H3) are described. Protonation of the tpy domain of the ligands is facile. Solution behaviour has been studied by NMR and electronic spectroscopies. Representative structural data are presented for neutral and monoprotonated ligands, and illustrate that H‐bonding involving the formal amine NH unit is a dominant structural motif in all cases.  相似文献   

20.
Reactions of 4-methoxy- or 1,4-dihydro-4-oxo-3′-methylthio-3,4′-diquinolinyl sulfides 1 and 7 with a nitrating mixture ran as the 3′-methylthio group 5-mono-oxidation followed by C6- and C8-nitration and led to the mixture composed of products 3, 4, 5 and 6 (in the case of substrate 1 ) or compounds 5 and 6 (for substrate 7 ). In the reaction with hydrochloric acid 4-methoxy-3′-methylsulfinyl-3,4′-diquinolinyl sulfides 3 and 4 could be hydrolysed to 3′-methylsulfinyl-4(1H)-quinolinones 5 or 6 respectively, the methylsulfinyl group remaining unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号