首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Contributions to the Chemistry of Phosphorus. 105. 1,2,34-Tetraphenyl-1,4-bis(trimethylsilyl)-tetraphosphane and 1,2,3,4-Tetraphenyltetraphosphane 1,2,3,4-Tetraphenyl-1,4-bis(trimethylsilyl)-tetraphosphane, Me3Si? (PPh)4? SiMe3 ( 1 ), is obtained by reacting K2(PPh)4 with trimethylchlorosilane under suitable conditions. Compound 1 disproportionates almost easier than the corresponding triphosphane (Me3Si)2(PPH)3. Of the six possible diastereomers only 1a (erythro, meso, erythro), 1b (erythro, d,l, erythro), 1 d (threo, d,l, threo), and 1 f (erythro, threo, threo) can be detected in solution by 31P-NMR spectroscopy. In consequence of rapid inversion at the P atoms a dynamic equilibrium exists between the different isomers. The assignment of the 31P-NMR-spectroscopically observed spin systems to the corresponding diastereomers results from the dependence of the 1JPP-coupling constants on the dihedral angle between vicinal free electron pairs as well as on the observed frequency distribution. In the alcoholysis of 1 the corresponding hydride H? (PPh)4? H ( 2 ) is formed as the main product. It could be isolated in spite of its instability. At room temperature 2 disproportionates rapidly forming mainly (PPh)4 and H2(PPh)2 (ratio 1:2) at first; later on also H2(PPh)3, H2PPh, and (PPh)5 are found. The corresponding rearrangements follow a four-center mechanism involving predominantly P? P bonds.  相似文献   

2.
Contributions to the Chemistry of Sulfur. 114. Crystal and Molecular Structures of Hexathiepane (S6CH2), Pentathiane (S5CH2), and Dibenzylpentathiane (S5C (CH2C6H5)2) The crystal and molecular structures of hexathiepane 1 , pentathiane 2 and dibenzylpentathiane 3 were determined by single crystal X-ray structure analyses. 1 : Monoclinic space group P21/c; a = 7.694(4), b = 7.668(4), c = 12.367(6) Å, β = 108.9(1)°; Z = 4, dcalc. = 1.986 g/cm3. The seven-membered heterocycle exists in twist-conformation. 2 : Monoclinic space group C2/c; a = 10.990(5), b = 6.872(4), c = 15.507(6) Å, β = 94.1(1)°; Z = 8, dcalc. = 1.982 g/cm3. The six-membered heterocycle exists in chair-conformation. 3 : Monoclinic space group P21/c; a = 12.907(8), b = 13.611(8), c = 9.408(6) Å, β = 98.9(1)°; Z = 4, dcalc. = 1.442 g/cm3. 3 is analogous to 2 a six-membered heterocycle with chair-conformation. The benzylic groups are distorted to each other. Bond lengths, bond angles, and dihedral angles of the heterocyclic sulfur rings arc discussed, especially with regard to a comparison with cyclohexasulfur, cycloheptasulfur. and cyclooctasulfur.  相似文献   

3.
Contributions to the Chemistry of Hydrazine and its Derivatives. 52. Crystal and Molecular Structures of the tert.-Butyloxycarbonyl Derivatives of Cyclotetrasulfurdihydrazide and Cyclohexasulfurhydrazide The structures of the tert.-butyloxycarbonyl derivatives of cyclotetrasulfurdihydrazide and cyclohexasulfurhydrazide were determined by X-ray analyses. Both sulfur(II)-nitrogen rings exist in crown conformation and contain only sp2-hybridized nitrogen atoms. Bond lengths, bond angles, and dihedral angles are discussed.  相似文献   

4.
Contributions to the Chemistry of Phosphorus. 67. About the Cyclotriphosphanes (PC6H5)3, (PC6H5)2(PC2H5), and (PC6H5)2(PCH3) The reaction of (CH3)3Si(C6H5)P? P(C6H5)Si(CH3)3 with RPCl2 (R = C6H5, C2H5, CH3) yields the cyclotriphosphanes (PC6H5)3 1 , (PC6H5)2(PC2H5) 3 , and (PC6H5)2(PCH3) 4 , respectively. Besides, the corresponding homo- and mixed-substituted cyclotetraphosphanes, cyclopentaphosphanes, and cyclohexaphosphanes are formed. The relative concentrations of the cyclotriphosphanes in the reaction mixtures decrease continuously, whereas those of the cyclopentaphosphanes increase. The reasons for these ring-interconversion reactions of the cyclophosphanes (PR)n are discussed. The cyclotriphosphanes 1, 3 , and 4 are characterized by 31P chemical shifts between +130 and +160 ppm that are at considerable high field compared to open-chain triphosphanes and cyclophosphanes of different ring-size. The substituents R are situated on both sides of the P3-ring plane, thus giving rise to two diastereomers of 3 that are observed simultaneously in the statistically expected ratio. The 31P n.m.r. parameters of 1 and 3 are reported and discussed.  相似文献   

5.
Contributions to the Chemistry of Sulfur. 115. Crystal and Molecular Structure of Benzopentathiepine The structure of benzopentathiepine has been determined from three-dimensional single-crystal X-ray data. The crystal are monoclinic, space group P21/c, with 4 molecules in the unit cell of dimensions a = 6.942(4) Å, b = 10.223(10) Å, c = 13.015(8) Å, β = 102,15(10)°. The conformation of the seven-membered ring is the chair form. Details of the conformation are discussed. Bond distances, bond angles, and dihedral angles are compared with those in other molecules, which have similar structure.  相似文献   

6.
Contributions to the Chemistry of Phosphorus. 183. Lithium Tetrahydrogen Heptaphosphide and Lithium Octahydrogen Heptaphosphide Lithium tetrahydrogen heptaphosphide, LiH4P7 ( 1 ), and lithium octahydrogen heptaphosphide, LiH8P7 ( 2 ), belong to the first reaction products of the metalation of P2H4 with n-butyllithium that can be identified. Both compounds are also formed on reaction of Li3P7 with excess P2H4. 1 also results from the reaction of LiH4P5 with P2H4. Whereas 1 can be isolated as an orange-red crystalline solvent adduct in a purity of 60-70 per cent, 2 cannot be enriched further due to its extreme reactivity. The composition and the structure of 1 and 2 have been elucidated from their 31P-NMR spectra. Hence, 1 has a P7 skeleton analogous to that of norbornane, whereas 2 as a precursor in the formation of 1 from P2H4 and n-BuLi is an open-chain doubly branched heptaphosphide.  相似文献   

7.
Contributions to the Chemistry of Phosphorus. 72. About the Alkyl Cyclomonocarba Phosphanes (PR)4CH2, R = CH3, C2H5, t-C4H9 The alkyl-substituted cyclomonocarbaphosphanes (PR)4CH2 (R = CH3 1 , C2H5 2 , t-C4H9 3 ) are obtained in very good yield by the reaction of the corresponding dipotassium alkylphosphides K2(PR)n (n = 2, 3, 4) with methylene chloride. Besides, small amounts of the homocyclic rings characteristic for the given substituent and of the five-membered cyclodicarbaphosphanes (PR)3(CH2)2 with isolated CH2 groups are formed. For the alkylcyclomonocarbaphosphanes 1 and 2 , configuration isomers could be identified for the first time. The “all-trans” forms are always predominant; the relative amounts of the other isomers decrease strongly with increasing number of cis relationships between the substituents at adjacent phosphorus atoms. The 31P n.m.r. parameters for three of the all together six isomers of 1 distinguishable by n.m.r. spectrometry and for the “all-trans” isomers of 2 and 3 are reported and discussed. A definite separation is possible between substituent and configuration influence on the chemical shifts as well as on the coupling constants.  相似文献   

8.
Contributions to the Chemistry of Hydrazine and its Derivatives. 56. Crystal and Molecular Structure of Diethyl 1,2-Hydrazinedicarboxylate The structure of Diethyl 1,2-Hydrazinedicarboxylate 1 was determined by an X-ray analysis. 1 crystallizes in the monoclinic space group C2/c with a = 13.279 Å, b = 8.746 Å, c = 7.646 Å, β = 97.30°; Z = 4, dcalc. = 1.328 g/cm3. The molecules contain a 2-fold rotation axis perpendicular to the N? N bond and consist of two planar halfs which are arranged nearly perpendicular to each other. The molecular data and in the crystal existing CO …? HN hydrogen bonds are discussed.  相似文献   

9.
Structural Chemistry of Phosphorus Containing Chains and Rings. 11. Crystal and Molecular Structures of the Two Stereoisomers of Tetraphospha-silaspiro[2.2]pentane (PBut)2Si(PBut)2 The spirocyclic compound 1,2,4,5-tetra-tert-butyl-1,2,4,5-tetraphospha-3-silaspiro[2.2]pentane exists in tow diastereomers of point symmetry 4 and 2. The isomer with symmetry 4 even in the solid crystallizes tetragonally in I41/a with a = 1247.0, c = 1505.5 pm and Z = 4. The isomer of fairly exact symmetry 2 crystallizes triclinically in P1 with a = 612.8, b = 996.3, c = 1017.2 pm, α = 75.63, β = 72.38, γ = 88.71° and Z = 1. In this disordered structure the surroundings of Si is slightly distorted due to the influence of the substituents. The (average) bond lengths are (4 , 2): d(Si? P) = 220.09(9), 221.5(5); d(P? P) = 225.5(2), 224.2(5); d(P? C) = 189.4(3), 190(2); d(C? C) = 151.4(4), 152(3) pm. The geometry of the substituents in both isomers is quite normal.  相似文献   

10.
Contributions to the Chemistry of Phosphorus. 142. P6(t-Bu)5H – the First Cyclotetraphosphane with a P2 Side Chain The thermolysis of 1, 2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H, leads to formation of the hitherto unknown hexaphosphane P6(t-Bu)5H ( 1 ). In the first instance the iso-P5H5 derivative P5(t-Bu)4H [3] is formed, which reacts further with H2(t-BuP)2 or H2(t-BuP)3 yielding 1 . Compound 1 has been isolated in the pure state and structurally characterized as 1-(1,2-di-tert-butyldiphosphino)-2, 3, 4-tri-tert-butyl-cyclotetraphosphane, i. e. as a four-membered ring compound with a P2 side chain. Due to the chirality of the P atoms in the side chain, 1 exists as a mixture of two configurational isomers, the threo-and the erythro-form.  相似文献   

11.
Contributions to the Chemistry of Phosphorus. 225. Lithium Pentahydrogen Octaphosphide Lithium pentahydrogen octaphosphide, LiH5P8 ( 1 ), belongs to the first reaction products of the metallation of P2H4 with n-butyllithium to be detected. Compound 1 is also formed in the reactions of the tricyclic heptaphosphide Li3P7 or the monocyclic pentaphosphide LiH4P5 with P2H4. In all cases, LiH4P7, LiH8P7, and further not yet identified polyphosphides are formed additionally. The composition and the structure of 1 have been elucidated by 31P-NMR studies, above all a complete analysis of its low-temperature 31P{1H}-NMR spectrum. Hence, compound 1 is 7-lithium-2,5,6-trihydrogen-3-phosphino-bicyclo[2.2.1]heptaphosphide and has a norbornane-type P7 skeleton. At room temperature 1 decomposes to furnish more phosphorus-rich lithium polyphosphides.  相似文献   

12.
Contributions to the Chemistry of Phosphorus. 151. Dilithium Dihydrogen Tetradecaphosphide, Li2H2P14: Preparation and Structural Characterization Dilithium dihydrogentetradecaphosphide, Li2H2P14 ( 1 ), is obtained as an orange-red solvent adduct Li2H2P14 · 6 THF in a purity of 80–90 per cent by reacting P2H4 with n-BuLi under suitable conditions. 1 is also formed in the reaction of Li3P7 or LiH4P5 with P2H4, and in the disproportionation of LiH4P7. According to its 2D-31P-NMR spectrum 1 is a conjuncto-phosphane built up by one P7(5)?- and one P9(3)?-unit group with structures analogous to norbornane and delta-cyclane, respectively.  相似文献   

13.
Structural Chemistry of Phosphorus-containing Chains and Rings. 2. Crystal and Molecular Structure of the Diphosphaborirane (t-BuP)2BNEt2 The three-membered P2B-heterocycles 1,2-di-tert-butyl-3-diethylamino-1,2,3-diphosphaborirane, (t-BuP)2BNEt2, crystallizes triclinic in the space group P1 with a = 935.5 pm, b = 985.4 pm, c = 987.4 pm,α = 81.55°, β = 89.40°, γ =69.07°, and Z = 2 formula units. The main structural feature is a short B? N-bond length (138.2 pm) inside a plane P2BN-group. The endocyclic bond angles are 54.0° on phosphorus and 72.0° on boron. The (average) bond lengths are P? P = 222.5 pm, P? C = 189.5 pm, P? B = 189.3 pm, B? N = 138.2 pm, N? C = 147.2 pm, C? C = 152.6 pm, and C? H = 98 pm. The geometry of the substituents ethyl and tert-butyl is quite normal.  相似文献   

14.
Contributions to the Chemistry of Phosphorus. 169. 31P-NMR Spectroscopic Detection and Structure of Hexaphosphane(6), P6H6 Phosphane mixtures containing 5–10 P-% of hexaphosphane(6), P6H6, are obtained by thermolysis of a mixture of chain-type phosphorus hydrides PnHn+2 (n = 2–7) at 25–35°C. According to the complete analysis of the 31P{1H}-NMR spectrum on the basis of selective population transfer experiments, P6H6 has the constitution of 1-phosphino-cyclopentaphosphane. An indication of the constitutional isomer with a six-membered phosphorus-ring and all trans orientation of the hydrogen atoms and the free electron pairs, respectively, has not been found. From the δ(31P) data of the phosphanes with five-membered rings PnHn (n = 5, 6) a relationship for the chemical shifts of this class of compounds as a function of their structural parameters is derived.  相似文献   

15.
Triorganoantimony and Triorganobismuth Disulfonates. Crystal and Molecular Structure of (C6H5)3M(O3SC6H5)2(M = Sb, Bi) Triorganoantimony disulfonates R3Sb(O3SR′)2 [R = CH3 = Me, C6H5 = Ph; R′ = Me, CH2CH2OH, Ph, 4-CH3C6H4. R = Ph; R′ = 2,4-(NO2)2C6H3], Me3Sb(O3SCF3)2 · 2 H2O and triphenylbismuth disulfonates Ph3Bi(O3SR′)2 [R = Me, CF3, CH2CH2OH, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] have been prepared by reaction of Me3Sb(OH)2, (Ph3SbO)2, and Ph3BiCO3, respectively, with the appropriate sulfonic acids. From vibrational data an ionic structure is inferred for Me3Sb(O3SCF3)2 · 2 H2O and Me3Sb(O3SCH2CH2OH)2, and a covalent structure for the other compounds with a penta-coordinated central atom with trigonal bipyramidal surrounding (Ph or Me in equatorial, unidentate sulfonate ligands in apical positions). Ph3M(O3SPh)2 (M = Sb, Bi) crystallize monoclinic [space group P21/c; M = Sb/Bi: a = 1 611.5(8)/1 557.4(9), b = 987.5(6)/1 072,5(8), c = 1 859.9(9)/1 696.5(9) pm, β = 105.71(5)/96.62(5)°; Z = 4; d(calc.) 1.556/1.781 Mg · m?3; Vcell = 2 849.2 · 106/2 814.8 · 106 pm3; structure determination from 3 438/3 078 independent reflexions (I ≥ 3σ(I)), R(unweighted) = 0.030/0.029]. M is bonding to three Ph groups in the equational plane [mean distances Sb/Bi? C:210.1(4)/219.1(7) pm] and two sulfonate ligands with O in apical positions [distances Sb? O: 210.6(3), 212.8(2); Bi? O: 227.6(5), 228.0(4) pm]. Weak interaction of M with a second O atom of one sulfonate ligand is inferred from a rather short M? O contact distance [Sb? O: 327.4(4), Bi? O: 312.9(5) pm], and from the distortion of equatorial angles [C? Sb? C: 128.4(2), 119.2(2), 112.2(2); C? Bi? C: 135.9(3), 117.8(3), 106.3(3)°]  相似文献   

16.
Contributions to the Chemistry of Phosphorus. 61 About the Structure of the Salts M (PC6H5)3 (M = K, Na) The structure of the salts M(PC6H5)3 (M = K, Na) was determined by means of 21P nmr spectroscopy. Contrary to the opinion presented in the literature on the potassium salt, both compounds have an open chain structure. so that they are 1,3-Dialkali-l,2,3-triphenyl-tri-phosphides. The structure was proved by comparison of the 31P nnmr parameters with those of triphenyl-cyclotriphosphane 3 . and 1,2,3 triphenyl-triphosphane 5 . The occurrence of only AB2 spin systems each for both of the pure salts as well as for an equimolecular mixture of these compounds indicates a fast inter- and possibly intramolecular metal exchange in solution. The latter of which probably takes place in the case of the solved homologue 1,-4-dipotassium-l,2,3,4-tetra-phenyl-tetraphosphide 6. for which the 31P nmr data indicate a quasi-cyclic conformation.  相似文献   

17.
Contributions to the Chemistry of Phosphorus. 212. Tetraisopropyldodecaphosphane(4), P12i-Pr4 – Preparation, Properties, and Molecular Dynamics According to an earlier crystal structure analysis, tetraisopropyldodecaphosphane(4) ( 1 ) exhibits the symmetry C2, and the substituents are arranged in all-trans position [3]. We have now found by NMR spectroscopic studies that in solution a second configurational isomer of the symmetry CS ( 1b ) exists in addition to the molecule present in the crystal ( 1a ). The transformation of 1a into 1b , which can only occur through a quasi synchronous inversion at the atoms P3 and P4 or P9 and P10, takes place at a noticeable rate already below room temperature.  相似文献   

18.
Investigations on the Chemistry and Structure of Vanadyl-halogenides Aqueous solutions of VOI2 can be prepared from VOSO4 and BaI2. By concentrating VOI · 3 H2O is formed; but adducts of VOI2 with DMSO and DMF can be isolated. The structure of [VO(DMSO)5]I2 was determined by X-ray single crystal techniques: Monoclinic; space group P21/c; a = 10.696; b = 10.877; c = 24.74 Å; ß = 109.87°; Z = 4. – Other new compounds are VO(OCH3)Br · 3 pyr and VOBr2 · 2 H2O · 2 eth, which can be decomposed to VOBr2. The structures of VOCl2 and VOBr2 were determined from crystal powders (space group I mmm). IR and reflection spectra (4–50 kK) and magnetic moments of all compounds were measured.  相似文献   

19.
Contributions to the Chemistry of Organo Transition Metal Compounds. 55. Preparation and Properties of Niobocenium and Tantalocenium Salts — Crystal and Molecular Structure of [(C5H5)2NbCl2][BF4] · CH3CN Niobocenium and tantalocenium compounds of the type [(C5H5)2MCl2]X (X = BF4, PBh4, PF6) were synthesized from the metallocene dichlorides and ferricenium salts, [(C5H5)2Fe]X, in methylene dichloride or tetrahydrofuran. With acetonitrile as solvent [(C5H5)2MCl2]X · CH3CN complexes are formed. Stable methyl compounds of the type [(C5H5)2M(CH3)2]X were obtained, when (C5H5)2Ta(CH3)2 is oxidized by means of ferricenium salts. The new complexes were characterized by elemental analysis, i. r., and 1H n.m.r. spectra. The structure of [(C5H5)2NbCl2][BF4] · CH3CN has been determined by X-ray structure analysis. The compound crystallizes in the orthorhombic space group Cmcm with a = 8.324(12), b = 19.581(13), c = 9,563(8) Å and Z = 4. The coordination geometry of the Nb atom is tetrahedrally.  相似文献   

20.
Contributions to the Chemistry of Phosphorus. 138. P5(t-Bu)4H — the First Derivative of iso-P5H5 The thermolysis of 1,2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H, yields under suitable conditions the compound P5(t-Bu)4H ( 1 ) as the main product. Besides, the tert-butylphosphanes t-BuPH2, P6(t-Bu)5H ( 2 ), H2(t-BuP)3, and (t-BuP)4 are formed. 1 has been isolated in the pure state and structurally characterized as 1-(tert-butylphosphino)-2,3,4-tri-tert-butyl-cyclotetraphosphane. Hence, compound 1 is a derivative of iso-P5H5 with a branched phosphorus skeleton built up by a four-membered ring and a phosphorus side chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号