首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The homopolymerization of propylene oxide was first conducted at 80°C in the absence of any solvent by using various metal salts of acetic acid and it was found that Mg(OAc)2, Cr(OAc)3, Mn(OAc)2, Co(OAc)2, Ni(OAc)2, Zn(OAc)2, and Sn(OAc)2 were effective for the polymerization. The copolymerization of propylene oxide and carbon dioxide was next examined by using these effective metal salts of acetic acid as catalysts. Most of these were effective also for the copolymerization. The nature of the polymer obtained was strongly dependent on the catalyst used. Co(OAc)2 and Zn(OAc)2 gave an alternate copolymer of propylene oxide and carbon dioxide, Mg(OAc)2, Cr(OAc)3, and Ni(OAc)2 gave a random copolymer, while Sn(OAc)2 gave a homopolymer of propylene oxide. Then the copolymerization of propylene oxide and carbon dioxide was kinetically investigated in some detail by using Co(OAc)2 as a catalyst. On the basis of the results obtained, a plausible mechanism was proposed for both the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide.  相似文献   

2.
Using excessively loaded propylene oxide (PO) as a solvent, the copolymerization of carbon dioxide (CO2) and PO was carried out with zinc glutarate catalyst, consequently producing poly(propylene carbonate) of high molecular weight in a high yield (64–70 g polymer per gram of catalyst) never achieved before. Both the PO used as solvent and the excessively loaded CO2 were fully recoverable, respectively, and reusable for their copolymerization, indicating that this is a clean, green polymerization process to convert CO2 to its polycarbonate. The polymer yield was further improved by scaling up the copolymerization process. Among zinc glutarate catalysts prepared through several synthetic routes, one from zinc oxide delivered the highest yield in the copolymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1863–1876, 1999  相似文献   

3.
Polymeric donors having ether or carbonyl groups were added to the TiCI3–AlEt2CI catalyst system as the third component, and the effects on the polymerization of propylene were investigated in comparison with the effect of the electron donors with low molecular weight. The polymeric donors were effective in making the catalyst more active, but the donors of low molecular weight depressed the catalyst activity. In the case of poly(propylene glycol dimethyl ether) (PPG-DME), PPG–DME with a number of propylene oxide units (n) of more than 6.7 was effective in enhancing the catalyst activity. These effects were considered to be due to the different reactivities between TiCI3 and AlEt2CI-polymeric donor complexes having various chain lengths.  相似文献   

4.
Catalytic activities of the reaction products of diethylzinc or triethylaluminum with primary amines in the polymerization of propylene oxide were studied. Generally, organozinc compounds give higher ratio of the crystalline to the amorphous polymer than the organoaluminums. In the reactions of organometallic compounds with primary amines, Et2AlNPhAlEt2, Et2AlN-t-BuAlEt2, EtZnNH-t-Bu, and EtZn-t-BuZnEt were isolated in crystalline state. EtZnN-t-BuZnEt proved to be an excellent catalyst for the stereospecific polymerization of propylene oxide and forms coordination complexes with some electron donors such as dioxane, pyridine, epichlorohydrin and propylene oxide. The propylene oxide complex is unstable in solution and decomposes at temperatures above room temperature to give poly(propylene oxide), while the pyridine complex has no catalytic activity. Therefore, it is concluded that the polymerization of propylene oxide with this catalyst proceeds through the coordination of propylene oxide to the zinc atom of the catalyst.  相似文献   

5.
The bimetallic catalysts of Osgan and Teyssie, (RO)2Al-O-Zn-O-Al(OR)2, are effective, unusual catalysts for polymerizing epoxides. The polymer obtained from propylene oxide when R = n-Bu is preponderantly isotactic and highly crystalline and thus, largely head-to-tail. Crystallizable, sulfur vulcanizable propylene oxide rubber was made by copolymerizing propylene oxide (PO) with allyl glycidyl ether (AGE) with this catalyst. This product after S vulcanization exhibited gum tensile and other properties which were superior to the commercially available, amorphous PO–AGE copolymer of similar composition. However, the Osgan–Teyssie catalyst is very sensitive to reactive, polar impurities. Hindered alkyl aluminums and especially alkoxides such as Et2AlOtert–Bu can be added to help alleviate this problem. The reported favorable (but slow) copolymerization of epichlorohydrin with propylene oxide in nonpolar media with the Osgan–Teyssie catalyst has been confirmed and an alternate explanation for this unusual result suggested.  相似文献   

6.
Recently, rare earth ternary coordination catalyst represented as Y(CCl3OO)3‐Glycerin‐ZnEt2 has been used for producing poly(propylene carbonate) (PPC, an alternating copolymer of carbon dioxide and propylene oxide) in industry scale, but its catalytic activity needs further improvement. One reason for the relatively low catalytic activity lied in that only 11.7% of active center was efficient due to possible embedding of active center in the heterogeneous catalyst. In this report, supporting strategy was developed, where Y(CCl3OO)3‐Glycerin‐ZnEt2 was supported on various inorganic oxides. Two supporting methods were carried out. One way was to mix Y(CCl3OO)3‐Glycerin with inorganic oxide first and then ZnEt2 was dropped to form the supported catalyst, and the other was to make Y(CCl3OO)3‐Glycerin‐ZnEt2 at first and then mixing with inorganic oxides. The former showed decreasing catalytic activity compared with corresponding unsupported rare earth ternary catalyst, while an improvement of 16–36% in catalytic activity was realized in the latter. PPC with an average number molecular weight (Mn) of over 100 kg/mol and carbonate unit (CU) content of higher than 96% was prepared by both supported catalysts. The catalytic activity of the supported catalyst depended significantly on the supports, which increased in the following order: α‐Al2O3 < MgO < ZnO ≈ SiO2 <γ‐Al2O3. γ‐Al2O3 was the best support for rare earth ternary catalyst, which showed a remarkable 36% increase in catalytic activity, corresponding to the utilization of 17% of active center. Although MgO supported catalyst gave only an 8% increase in catalytic activity, the Mn and CU content of PPC were raised to about 143 kg/mol and 99%, whereas the PPC from common rare earth ternary catalyst was about 108 kg/mol and 97%, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Lewis base modification strategy on rare earth ternary catalyst was disclosed to enhance nucleophilic ability of active center during copolymerization of carbon dioxide and propylene oxide (PO), poly(propylene carbonate) (PPC) with H‐T linkages over 83%, and number–average molecular weight (Mn) up to 100 kg/mol was synthesized at room temperature using Y(CCl3OO)3‐ZnEt2‐glycerine catalyst and 1,10‐phenanthroline (PHEN) cocatalyst. Coordination of PHEN with active Zinc center enhanced the nucleophilic ability of the metal carbonate, which became more regio‐specific in attacking carbon in PO, leading to PPC with improved H‐T linkages. Moreover, the binding of PHEN to active Zinc center also raised the carbonate content of PPC to over 99%, whereas the PPC from common rare earth ternary catalyst was about 96%. Unlike the highly regio‐regular structure PPC but with relatively low molecular weight recently reported in the literature, our high molecular weight regio‐regular PPC did show significant improvement in thermal and mechanical performances. PPC with H‐T linkages up to 83.2% showed glass transition temperature (Tg) of 43.3 °C, while Tg of PPC with H‐T linkages of 69.7% was only 36.1 °C. When H‐T connectivity was raised from 69.7 to 83.2%, the modulus of PPC showed a 78% increase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4451–4458, 2008  相似文献   

8.
刘光烜  郦聪  陈丹  倪旭峰  江黎明  沈之荃 《催化学报》2010,31(10):1242-1246
 由硼氢化稀土、二乙基锌和甘油制备了三元体系 Ln(BH4)3•3THF-ZnEt2-Gly (甘油) 用于催化环氧丙烷 (PO) 与 CO2 共聚反应, 详细考察了催化剂组成、不同稀土元素和溶剂性质对聚合反应的影响. 通过正交试验优化的催化剂组成和聚合条件为: Y(BH4)3•3THF-ZnEt2-Gly (摩尔比 = 3:60:20) 催化剂, 乙二醇二甲醚溶剂, PO/Y 摩尔比 1000, [Y] = 6.67 mmol/L, p(CO2) = 3.0 MPa, 80oC, 6 h. 最高催化效率可达 4908 g /(mol•h); 碳酸酯含量为 95.7%, 数均分子量为 6.97x104.  相似文献   

9.
Co2(CO)8 catalyzes the ring‐opening copolymerization of propylene oxide with CO to afford the polyester in the presence of various amine cocatalysts. The 1H and 13C{1H} NMR spectra of the polyester, obtained by the Co2(CO)8–3‐hydroxypyridine catalyst, show the following structure ? [CH2? CH(CH3)? O? CO]n? . The Co2(CO)8–phenol catalyst gives the polyester, which contains the partial structural unit formed through the ring‐opening copolymerization of tetrahydrofuran with CO. The bidentate amines, such as bipyridine and N,N,N′,N′‐tetramethylethylenediamine, enhance the Co complex‐catalyzed copolymerization, which produces the polyester with a regulated structure. Acylcobalt complexes, (RCO)Co(CO)n (R = Me or CH2Ph), prepared in situ, do not catalyze the copolymerization even in the presence of pyridine. This suggests that the chain growth involves the intermolecular nucleophilic addition of the OH group of the intermediate complex to the acyl–cobalt bond, forming an ester bond rather than the insertion of propylene oxide into the acyl–cobalt bond. Co2(CO)8? Ru3(CO)12 mixtures also bring about the copolymerization of propylene oxide with CO. The molar ratio of Ru to Co affects the yield, molecular weight, and structure of the produced copolymer. The catalysis is ascribed to the Ru? Co mixed‐metal cluster formed in the reaction mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4530–4537, 2002  相似文献   

10.
Highly random copolymers of ϵ-caprolactone (CL) and D ,L -lactide (LA) were synthesized by a new catalyst system, rare earth chloride–propylene oxide (PO) system. In the presence of propylene oxide, all rare earth chlorides tested are highly effective for the copolymerization. The influences of reaction conditions on the copolymerization catalyzed by the NdCl3-5PO system have been investigated in detail. The reactivity ratios of ϵ-caprolactone and D ,L -lactide were determined and show that the copolymerization with this new rare earth catalyst is closer to ideal copolymerization than reported for other catalysts. The microstructure of copolymer analyzed by 13C-NMR shows that the monomer units in the copolymer is near to completely random distribution with a short average monomer sequence length. The DSC measurement confirms the high randomness of the chain structure. The mechanism studied by NMR indicates that the rare earth alkoxide generated by the reaction of rare earth chloride with propylene oxide initiates the copolymerization, and then proceeds via a “coordination-insertion” mechanism with acyl-oxygen bond cleavage of CL and LA. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Oligo and poly(propylene ether carbonate)-polyols with molecular weights from 0.8 to over 50 kg/mol and with 60–92 mol % carbonate linkages were synthesized by chain transfer copolymerization of carbon dioxide (CO2) and propylene oxide (PO) mediated by zinc glutarate. Online-monitoring of the polymerization revealed that the CTA controlled copolymerization has an induction time which is resulting from reversible catalyst deactivation by the CTA. Latter is neutralized after the first monomer additions. The outcome of the chain transfer reaction is a function of the carbonate content, i. e. CO2 pressure, most likely on account of differences in mobility (diffusion) of the various polymers. Melt viscosities of poly(ether carbonate)diols with a carbonate content between 60 and 92 mol % are reported as function of the molecular weight, showing that the mobility is higher when the ether content is higher. The procedure of PO/CO2 catalytic chain copolymerization allows tailoring the glass temperature and viscosity.  相似文献   

12.
The reaction of carbon dioxide with propylene oxide in the presence of the (salen)CoCl or (TPP)CoCl (salen = bis(3,5-di-tert-butyl-salicylidene)-1,2-diaminocyclohexane, TPP = 5,10,15,20-tetraphenylporphyrin) catalyst and the PPNCl (bis(triphenylphosphine)iminium chloride) cocatalyst has been carried out at 20–60°С and a СО2 pressure of 0.6 MPa to investigate the effect of the ligand nature on the reaction rate and selectivity. The change in the reaction rate and selectivity in relation to the temperature and cocatalyst/catalyst ratio has been studied. The activation energy of the copolymerization of СО2 with propylene oxide catalyzed by the (salen)CoCl complex have been obtained.  相似文献   

13.
It has been developed for the synthesis of substituted-1,3,4-oxadiazole-2(3H)-one derivatives via a novel one-pot, tandem procedure assisted by propylene oxide. The 5-substitued-1,3,4-oxadiazole-2(3H)-ones and 3,5-disubstitued-1,3,4-oxadiazole-2(3H)-ones were, respectively, obtained from three-component reaction of acylhydrazines, carbon disulfide, and propylene oxide, and four-component reaction of acylhydarazines, carbon disulfide, propylene oxide, and organic halides. The reactions were carried out using water as solvent in the presence of potassium phosphate to afford the expected products in good to excellent yields.  相似文献   

14.
Ethylene sulfide was found to copolymerize with carbon disulfide to give poly(ethylene trithiocarbonate) in the presence of Hg(SC4H9)2, Zn(C2H5)2, or Cd(C2H5)2, which are well known as the effective catalysts for the coordinated anionic copolymerization of episulfides. The structure and the composition of the copolymer was determined by the infrared and NMR spectra. To establishe the mechanism of the copolymerization, the reaction of carbon disulfide and Hg(SC4H9)2, and also the ring-opening polymerization of ethylene trithiocarbonate were examined. Carbon disulfide was found to insert easily into the metal-sulfur bond of Hg(SC4H9)2 under the experimental conditions of the copolymerization. On the other hand, the ring-opening polymerization of ethylene trithiocarbonate did not take place with these catalysts, occurring only with the use of sulfuric acid. From these results, the mechanism of the copolymerization was discussed.  相似文献   

15.
Carbon dioxide (CO2) is an easily available renewable carbon source that can be used as a comonomer in the catalytic ring-opening polymerization of epoxides to form aliphatic polycarbonates. Herein, a series of new Salen-Co(III) bifunctional catalysts were synthesized for the first time, and they were studied to catalyze the copolymerization of CO2 and propylene oxide (PO)/cyclohexene oxide (CHO). At the same time, the effects of reaction conditions (electronic effect, temperature, time) on catalytic activity and selectivity were investigated. The results show that the Salen-Co(III) complexes with electron-withdrawing groups have higher selectivity and activity for propylene carbonate (PPC)/cyclohexylene carbonate (PCHC). At the same time, the Salen-Co(III) complexes can better catalyze the copolymerization of CHO and CO2 than that of PO and CO2. The catalytic efficiency of the four complexes increased with increasing temperature, and the best reaction condition is 80°C, 30 min and 2 MPa of CO2.  相似文献   

16.
Synthesis of polyols from carbon dioxide (CO2) is attractive from the viewpoint of sustainable development of polyurethane industry; it is also interesting to adjust the structure of the CO2-polyols for versatile requirement of polyurethane. However, when renewable malonic acid was used as a starter, the copolymerization reaction of CO2 and propylene oxide (PO) was uncontrollable, since it proceeded slowly (13 h) and produced 40.4 wt% of byproduct propylene carbonate (PC) with a low productivity of 0.34 kg/g. A careful analysis disclosed that the acid value of the copolymerization medium was the key factor for controlling the copolymerization reaction. Therefore, a preactivation approach was developed to dramatically reduce the acid value to ~0.6 mg(KOH)/g by homopolymerization of PO into oligo-ether-diol under the initiation of malonic acid, which ensured the controllable copolymerization, where the copolymerization time could be shortened by 77% from 13 to 3 h, the PC content was reduced by 76% from 40.4 wt% to 9.4 wt%, and the productivity increased by 61% from 0.34 to 0.55 kg/g. Moreover, by means of preactivation approach, the molecular weight as well as the carbonate unit content in the CO2-diol was also controllable.  相似文献   

17.
A zinc glutarate (ZnGA) catalyst was prepared from the reaction of zinc oxide and glutaric acid in dry toluene. ZnGA was found to exhibit a catalytic activity for the copolymerization of carbon dioxide (CO2) and propylene oxide (PO) and the homopolymerization of PO but to reveal no catalytic activity for the homopolymerization of ϵ-caprolactone (CL). The ZnGA-catalyzed polymerization was extended for the terpolymerization of CO2 with PO and CL, producing poly(propylene carbonate-co-ϵ-caprolactone)s (PPCCLs) with a reasonably high molecular weight in high yields. In the terpolymerization, PO and CL were used as both co-monomers and reaction media, after the reaction completed, the excess co-monomers were easily recovered and reused in the next terpolymerization batch. For the synthesized polymers, enzymatic and biological degradability were investigated.  相似文献   

18.
Zinc glutarates were synthesized from zinc oxides with varying purities via different stirring routes. The particle size and structure of these zinc glutarates were determined by wide‐angle X‐ray diffraction, transmission electron microscopy, and the laser particle size analyzer technique. The results demonstrated that the crystallinity and crystalline perfectness of zinc glutarate are the crucial factors that affect the catalytic activity for the copolymerization of carbon dioxide (CO2) and propylene oxide (PO). Additionally, the catalyst with a small particle size dramatically increased the yield of the copolymerization between CO2 and PO. High‐molecular‐weight and regular molecular structure poly(propylene carbonate)s (PPC)s were obtained from CO2 and PO with the synthesized zinc glutarates. Very high catalytic activity of 160.4 g polymer/g catalyst was afforded. The NMR technique revealed that the PPC copolymer exhibits an exact alternating copolymer structure. The relationships between the crystallinity and the particle size of catalyst with the catalytic activity are correlated and discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3579–3591, 2002  相似文献   

19.
The alternating copolymerization of propylene oxide and carbon monoxide was investigated with cobalt complexes. The NaCo(CO)4/amine catalyst system selectively yielded oligo(3-hydroxybutyrate)s bearing a polymerizable crotonate end group, whereas the use of Co2(CO)8 as a cobalt source resulted in a smaller concentration of the crotonate end group and a high degree of polymerization. The high selectivity for the oligoesters with the crotonate end group with the NaCo(CO)4/amine system was attributed to its more basic reaction condition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4666–4670, 2004  相似文献   

20.
The catalytic activities of tetraphenylporphinatoaluminum chloride (TPPAlCl) and its propylene oxide adduct (TPPAl(PO)2Cl) were investigated in detail together with a quarternary salt Et4NBr for the copolymerization of carbon dioxide and propylene oxide. In addition, for the components and starting raw materials of the catalyst systems, catalytic activities were examined for the copolymerization. The TPPAlCl catalyst delivered oligomers containing ether linkages to a large extent, regardless of its PO adduction. And cyclic propylene carbonate, as byproduct, was formed in a very small portion. Using the TPPAlCl coupled with Et4NBr as a catalyst system, the formation of ether linkages was reduced significantly in the copolymerization; however, the obtained oligomer still contained ether linkages of 25.0 mol % in the backbone. On the other hand, the formation of cyclic carbonate was increased to 22.4 mol % relative to the oligomer product. The results indicate that the salt, which was coupled with the TPPAlCl catalyst, plays a key role in reducing the formation of ether linkage in the oligomer and, however, in enhancing the formation of cyclic carbonate. Similar results were obtained for the copolymerization catalyzed by the TPPAl(PO)2Cl/Et4NBr system. That is, the formation of ether linkages was not restricted further by the PO adduction of the TPPAlCl component in the catalyst system. Only oligomers with a relatively high molecular weight were produced. This indicates that the PO adduction of the TPPAlCl component contributes highly to the initiation and propagation step in the oligomerization, consequently leading to a relatively high molecular weight oligomer. In contrast, the Et4NBr, as well as the Et2AlCl, produced only cyclic carbonate in a very low yield. Furthermore, tetraphenylporphine exhibited no catalytic activity, regardless of using together with Et4NBr. On the other hand, the Et2AlCl coupled with Et4NBr provided a low molecular weight oligomer having ether linkages of 92.3 mol % in addition to the cyclic carbonate. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3329–3336, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号