首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis, Crystal Structures, and Vibrational Spectra of [Pt(N3)6]2– and [Pt(N3)Cl5]2–, 195Pt and 15N NMR Spectra of [Pt(N3)nCl6–n]2– and [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 By ligand exchange of [PtCl6]2– with sodium azide mixed complexes of the series [Pt(N3)nCl6–n]2– and with 15N‐labelled sodium azide (Na15NN2) mixtures of the isotopomeres [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 and the pair [Pt(15NN2)Cl5]2–/[Pt(N215N)Cl5]2– are formed. X‐ray structure determinations on single crystals of (Ph4P)2[Pt(N3)6] ( 1 ) (triclinic, space group P1, a = 10.175(1), b = 10.516(1), c = 12.380(2) Å, α = 87.822(9), β = 73.822(9), γ = 67.987(8)°, Z = 1) and (Ph4As)2[Pt(N3)Cl5] · HCON(CH3)2 ( 2 ) (triclinic, space group P1, a = 10.068(2), b = 11.001(2), c = 23.658(5) Å, α = 101.196(14), β = 93.977(15), γ = 101.484(13)°, Z = 2) have been performed. The bond lengths are Pt–N = 2.088 ( 1 ), 2.105 ( 2 ) and Pt–Cl = 2.318 Å ( 2 ). The approximate linear azido ligands with Nα–Nβ–Nγ‐angles = 173.5–174.6° are bonded with Pt–Nα–Nβ‐angles = 116.4–121.0°. In the vibrational spectra the PtCl stretching vibrations of (n‐Bu4N)2[Pt(N3)Cl5] are observed at 318–345, the PtN stretching modes of (n‐Bu4N)2[Pt(N3)6] at 401–428 and of (n‐Bu4N)2[Pt(N3)Cl5] at 408–413 cm–1. The mixtures (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 and (n‐Bu4N)2[Pt(15NN2)Cl5]/(n‐Bu4N)2[Pt(N215N)Cl5] exhibit 15N‐isotopic shifts up to 20 cm–1. Based on the molecular parameters of the X‐ray determinations the vibrational spectra are assigned by normal coordinate analysis. The average valence force constants are fd(PtCl) = 1.93, fd(PtNα) = 2.38 and fd(NαNβ, NβNγ) = 12.39 mdyn/Å. In the 195Pt NMR spectrum of [Pt(N3)nCl6–n]2–, n = 0–6 downfield shifts with the increasing number of azido ligands are observed in the range 4766–5067 ppm. The 15N NMR spectrum of (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 exhibits by 15N–195Pt coupling a pseudotriplett at –307.5 ppm. Due to the isotopomeres n = 0–5 for terminal 15N six well‐resolved signals with distances of 0.03 ppm are observed in the low field region at –201 to –199 ppm.  相似文献   

2.
Preparation and Vibrational Spectra of Nonahalogenodirhodates(III), [Rh2ClnBr9-n]3?, n = 0–9 The pure nonahalogenodirhodates(III), A3[Rh2ClnBr9-n], A = K, Cs, (TBA); n = 0–4, 9, have been prepared. They are formed from the monomer chlorobromorhodates(III), [RhClnBr6-n]3?, n = 0–6, which are bridged to confacial bioctahedral complexes by ligand abstraction in less polar organic solvents. From the mixtures the complexions are separated by ion exchange chromatography on DEAE-cellulose. The solid, air-stable, air-stable, K-, Cs- and (TBA)-salts of [Rh2ClnBr9-n]3?, n = 0–4, are green, of [Rh2Cl9]3? are brown. The IR and Raman spectra of [Rh2Br9]3? and [Rh2Cl9]3? are assigned according to the point group D3h. The chlorobromodirhodates exist as mixtures of geometrical and structural isomers, which belong to different point groups. The vibrational spectra exhibit bands in characteristic regions; at high wavenumbers stretching vibrations with terminal ligands v(Rh—Clt): 360–320, v(Rh—Brt): 280–250; in a middle region with bridging ligands v(Rh—Clb): 300–270, v(Rh—Brb): 210–170 cm?1; the deformation bands are observed at distinct lower frequencies. The terminal ligands are fixed very strong, and the distance between v(Rh—Xt) and v(Rh—Xb) increases with decreasing size of the cations.  相似文献   

3.
Di‐ and triorganotin(IV) carboxylates, RnSn(OCOC(R2)=CHR1)4–n (n = 2 and 3; R = Me, Et, n‐Bu, Ph; R1 = 3‐CH3O‐4‐OHC6H3, R2 = C6H5) were prepared by reacting the corresponding organotin(IV) chloride with the silver salt of the (E)‐3‐(4‐hydroxy‐3‐methoxyphenyl)‐2‐phenylpropenoic acid. The title compounds were investigated and characterized by elemental analysis, infrared (FT‐IR), multinuclear (1H, 13C, 119Sn) NMR, and mass spectrometry, and possible structures were proposed. The complexes and ligand acid ( HL ) have been evaluated in vitro against various bacteria and fungi. The results noticed during the biocidal activity screenings proved their in vitro biological potential. They were also tested for cytotoxicity.  相似文献   

4.
5.
Two new hybrid fluorides, {[(C2H4NH3)3NH]4+}2 · (H3O)+ · [Al7F30]9– ( I ) and {[(C2H4NH3)3NH]4+}2 · [Al7F29]8– · (H2O)2 ( II ), are synthesized by solvothermal method. The structure determinations are performed by single crystal technique. The symmetry of both crystals is triclinic, sp. gr. P 1, I : a = 9.1111(6) Å, b = 10.2652(8) Å, c = 11.3302(8) Å, α = 110.746(7)°, β = 102.02(1)°, γ = 103.035(4)°, V = 915.9(3) Å3, Z = 1, R = 0.0489, Rw = 0.0654 for 2659 reflections, II : a = 8.438(2) Å, b = 10.125(2) Å, c = 10.853(4) Å, α = 106.56(2)°, β = 96.48(4)°, γ = 94.02(2)°, V = 877.9(9) Å3, Z = 1, R = 0.0327, Rw = 0.0411 for 3185 reflections. In I , seven corner‐sharing AlF6 octahedra form a [Al7F30]9– anion with pseudo 3 symmetry; such units are found in the pyrochlore structure. The aluminum atoms lie at the corners of two tetrahedra, linked by a common vertex. In II , similar heptamers are linked in order to build infinite (Al7F29)n8– chains oriented along a axis. In both compounds, organic moieties are tetra protonated and establish a system of hydrogen bonds N–H…F with four Al7F309– heptamers in I and with three inorganic chains in II .  相似文献   

6.
Reaction of Ndcl3 with AlCl3 and mesitylene in benzene gives complex [Nd(η6‐1, 3, 5‐C6H3Me3)‐(AlCl4)3](C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X‐ray diffractions. The X‐ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P21/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, β = 90.85 (2)°, V = 3.2529 (6) nm3,Dc= 1.573 g/cm3, Z = 4. A comparison of bond parameters for all the reported Ln (η6‐Ar) (AlCl4)3 complexes indicates that the bond distance of La? C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.  相似文献   

7.
α ω-Alkane-bis-dimethylarsine Sulfides and Selenides, a Novel Class of Ligands The reaction of α,ω-alkane-bis-dimethylarsanes (CH3)2As? (CH2)n? As (CH3)2 with sulfur and selenium results in formation of the sulfides and selenides, respectively, (CH3)2As(X)? (CH2)n? As(CH3)2 or (CH3)2As(X)? (CH2)n? As(X)(CH3)2 (X = S, Se), which form chelat-complexes with the salts CoX2 · 6 H2O (X = Cl?, Br?, I?, NO3?). The UV-spectra of the complexes are presented and discussed.  相似文献   

8.
A series of 9 new Reineckate salts, A[CrIII(NCS)4(NH3)2] with various large organic cations A = tetraalkylammonium, [R4N]+, R = n‐butyl, n‐dodecyl; 1‐alkyl‐3‐methylimidazolium, (RMIm)+: R = methyl, ethyl, iso‐propyl, n‐butyl, and n‐hexyl; A = 1,3‐dimethyl‐2,4,5‐triphenylimidazolium and A = 1,2,3,4,5‐pentamethylimidazolium was synthesized. The melting point of each compound was measured to see if any belongs to the group of metal‐containing Ionic Liquids with low melting points. Each compound was further characterized by elemental analysis, NMR, IR, and UV/Vis spectroscopy. From NMR investigations information about the magnetic behavior was derivedusing the Evans method. It has been found that every compound is paramagnetic with effective magnetic moments of spin‐only CrIII. The structures of the Reineckates with A = tetra‐n‐butyl‐ammonium, tetra‐n‐dodecyl‐ammonium, 1‐ethyl‐3‐methylimidazolium, and 1,2,3,4,5‐pentamethylimidazolium were determined by single‐crystal X‐ray diffraction measurements: (nBu4N)[Cr(NCS)4(NH3)2]: monoclinic, C2/c (no. 15), a = 12.0818(8), b = 10.2425(8), c = 24.222(2) Å, β = 98.324(3)°, Z = 4, R1(F)/wR2(F2) = 0.0332/0.0871; {(C12H25)4N}[Cr(NCS)4(NH3)2]·0.85H2O: triclinic, P$\bar{1}$ (no. 2), a = 8.4049(1), b = 20.1525(4), c = 20.7908(4) Å, α = 67.487(1)°, β = 81.328(1)°, γ = 78.040(1)°, Z = 2, R1(F)/wR2(F2) = 0.0533/0.1343; (EMIm)[Cr(NCS)4(NH3)2]: orthorhombic, Pbcm (no. 57), a = 8.765(2), b = 15.888(3), c = 14.191(3) Å, Z = 4, R1(F)/wR2(F2) = 0.0466/0.1271; (PeMIm)[Cr(NCS)4(NH3)2]: monoclinic, P21/n (no. 14), a = 6.0817(2), b =13.9811(5), c = 25.2902(9) Å, β = 90.075(2)°, Z = 4, R1(F)/wR2(F2) = 0.0405/0.1111.  相似文献   

9.
Reaction of 1, 9‐dihydro‐purine‐6‐thione (puSH2) in presence of aqueous sodium hydroxide with PdCl2(PPh3)2 suspended in ethanol formed [Pd(κ2‐N7,S‐puS)(PPh3)2] ( 1 ). Similarly, complexes [Pd(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 2 – 4 ) {L‐L = dppm (m = 1) ( 2 ), dppp (m = 3) ( 3 ), dppb (m = 4) ( 4 )} were prepared using precursors the [PdCl2(L‐L)] {L‐L = Ph2P–(CH2)m–PPh2}. Reaction of puSH2 suspended in benzene with platinic acid, H2PtCl6, in ethanol in the presence of triethylamine followed by the addition of PPh3 yielded the complex [Pt(κ2‐N7,S‐puS)(PPh3)2] ( 5 ). Complexes [Pt(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 6 – 8 ) {L‐L = dppm ( 6 ), dppp ( 7 ), dppb ( 8 )} were prepared similarly. The 1, 9‐dihydro‐purine‐6‐thione acts as N7,S‐chelating dianion in compounds 1 – 8 . The reaction of copper(I) chloride [or copper(I) bromide] in acetonitrile with puSH2 and the addition of PPh3 in methanol yielded the same product, [Cu(κ2‐N7,S‐puSH)(PPh3)2] ( 9 ), in which the halogen atoms are removed by uninegative N, S‐chelating puSH anion. However, copper(I) iodide did not lose iodide and formed the tetrahedral complex, [CuI(κ1‐S‐puSH2)(PPh3)2] ( 10 ), in which the thio ligand is neutral. These complexes were characterized with the help of elemental analysis, NMR spectroscopy (1H, 31P), and single‐crystal X‐ray crystallography ( 3 , 7 , 8 , 9 , and 10 ).  相似文献   

10.
The new compounds Pr8(C2)4Cl5 (1), Pr14(C2)7Cl9 (2), Pr22(C2)11Cl14 (3), Ce2(C2)Cl (4), La2(C2)Br (5), Ce2(C2)Br (6), Pr2(C2)Br (7), Ce18(C2)9Cl11 (8), and Ce26(C2)13Cl16 (9) were prepared by heating mixtures of LnX3, Ln and carbon or in an alternatively way LnX3, and “Ln2C3–x” in appropriate amounts for several days between 750 and 1200 °C. The crystal structures were investigated by X‐ray powder analysis (5–7) and/or single crystal diffraction (1–4, 8, 9). Pr8(C2)4Cl5 crystallizes in space group P21/c with the lattice parameters a = 7.6169(12), b = 16.689(2), c = 6.7688(2) Å, β = 103.94(1) °, Pr14(C2)7Cl9 in Pc with a = 7.6134(15), b = 29.432(6), c = 6.7705(14) Å, β = 104.00(3) °, Pr22(C2)11Cl14 in P21/c with a = 7.612(2), b = 46.127(9), c = 6.761(1) Å, β = 103.92(3) °, Ce2(C2)2Cl in C2/c with a = 14.573(3), b = 4.129(1), c = 6.696(1) Å, β = 101.37(3) °, La2(C2)2Br in C2/c with a = 15.313(5), b = 4.193(2), c = 6.842(2) Å, β = 100.53(3) °, Ce2(C2)2Br in C2/c with a = 15.120(3), b = 4.179(1), c = 6.743(2) Å, β = 101.09(3) °, Pr2(C2)2Br in C2/c with a = 15.054(5), b = 4.139(1), c = 6.713(3) Å, β = 101.08(3) °, Ce18(C2)9Cl11 in P$\bar{1}$ with a = 6.7705(14), b = 7.6573(15), c = 18.980(4) Å,α = 88.90(3) °, β = 80.32(3) °, γ = 76.09(3) °, and Ce26(C2)13Cl16 in P21/c with a = 7.6644(15), b = 54.249(11), c = 6.7956(14) Å, β = 103.98(3) ° The crystal structures are composed of Ln octahedra centered by C2 dumbbells. Such Ln6(C2)‐octahedra are condensed into chains which are joined into undulated sheets. In compounds 1–4 three and four up and down inclined ribbons alternate (4+4, 4+33+4–, 4+43+44+3), in compounds 8 and 9 four and five (4+5, 5+44+54+4), and in compounds 4–7 one, one ribbons (1+1) are present. The Ln‐(C2)‐Ln layers are separated by monolayers of X atoms.  相似文献   

11.
Weak Sn…I Interactions in the Crystal Structures of the Iodostannates [SnI4]2– and [SnI3] Iodostannate complexes can be crystallized from SnI2 solutions in polar organic solvents by precipitation with large counterions. Thereby isolated anions as well as one, two or three‐dimensional polymeric anionic substructures are established, in which SnI3 and SnI42– groups are linked by weak Sn…I interactions. Examples are the iodostannates [Me3N–(CH2)2–NMe3][SnI4] ( 1 ), (Ph4P)2[Sn2I6] ( 2 ), [Me3N–(CH2)2–NMe3][Sn2I6] ( 3 ), [Fe(dmf)6][SnI3]2 ( 4 ) and (Pr4N)[SnI3] ( 5 ), which have been characterized by single crystal X‐ray diffraction. [Me3N–(CH2)2–NMe3][SnI4] ( 1 ): a = 671.6(2), b = 1373.3(4), c = 2046.6(9) pm, V = 1887.7(11) · 106 pm3, space group Pbcm;(Ph4P)2[Sn2I6] ( 2 ): a = 1168.05(6), b = 717.06(4), c = 3093.40(10) pm, β = 101.202(4)°, V = 2541.6(2) · 106 pm3, space group P21/n;[Me3N–(CH2)2–NMe3][Sn2I6] ( 3 ): a = 695.58(4), b = 1748.30(8), c = 987.12(5) pm, β = 92.789(6)°, V = 1199.00(11) · 106 pm3, space group P21/c;[Fe(dmf)6][SnI3]2 ( 4 ): a = 884.99(8), b = 1019.04(8), c = 1218.20(8) pm, α = 92.715(7), β = 105.826(7), γ = 98.241(7), V = 1041.7(1) · 106 pm3, space group P1;(Pr4N)[SnI3] ( 5 ): a = 912.6(2), b = 1205.1(2), c = 1885.4(3) pm, V = 2073.5(7) · 106 pm3, space group P212121.  相似文献   

12.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4(ECN)2]2–, E = S, Se By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with dirhodane in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4(SCN)2] and by ligand exchange of trans(n‐Bu4N)2[Pt(N3)4I2] with Pb(SeCN)2 trans‐(n‐Bu4N)2[Pt(N3)4(SeCN)2] are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4(SCN)2] (triclinic, space group P 1, a = 10.309(3), b = 11.228(2), c = 11.967(2) Å, α = 87.267(13), β = 75.809(16), γ = 65.312(17)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4(SeCN)2] (triclinic, space group P 1, a = 9.1620(10), b = 10.8520(10), c = 12.455(2) Å, α = 90.817(10), β = 102.172(10), γ = 92.994(9)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–S = 2.337, Pt–Se = 2.490 and Pt–N = 2.083 (S), 2.053 Å (Se). The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172,1–175,0° are bonded with Pt–Nα–Nβ‐angles = 116,7–120,5°. In the vibrational spectra the platinum chalcogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4(ECN)2] are observed at 296 (E = S) and in the range of 186–203 cm–1 (Se). The platinum azide stretching modes of the complex salts are in the range of 402–425 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.64, fd(PtSe) = 1.36, fd(PtNα) = 2.33 (S), 2.40 (Se) and fd(NαNβ, NβNγ) = 12.43 (S), 12.40 mdyn/Å (Se).  相似文献   

13.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4X2]2–, X = Cl, Br, I By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with the elemental halogens in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4X2], X = Cl, Br, I are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4Cl2] (triclinic, space group P1, a = 10.352(1), b = 10.438(2), c = 11.890(2) Å, α = 91.808(12), β = 100.676(12), γ = 113.980(10)°, Z = 1), trans‐(Ph4P)2[Pt(N3)4Br2] (triclinic, space group P1, a = 10.336(1), b = 10.536(1), c = 12.119(2) Å, α = 91.762(12), β = 101.135(12), γ = 112.867(10)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4I2] (triclinic, space group P1, a = 10.186(2), b = 10.506(2), c = 12.219(2) Å, α = 91.847(16), β = 101.385(14), γ = 111.965(18)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–Cl = 2.324, Pt–Br = 2.472, Pt–I = 2.619 and Pt–N = 2.052–2.122 Å. The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172.1–176.8° are bonded with Pt–Nα–Nβ‐angles = 116.2–121.9°. In the vibrational spectra the platinum halogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4X2] are observed in the range of 327–337 (X = Cl), at 202 (Br) and in the range of 145–165 cm–1 (I), respectively. The platinum azide stretching modes of the three complex salts are in the range of 401–421 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.90, fd(PtBr) = 1.64, fd(PtI) = 1.22, fd(PtNα) = 2.20–2.27 and fd(NαNβ, NβNγ) = 12.44 mdyn/Å.  相似文献   

14.
103Rh NMR Spectroscopic Evidence of Mixed Nonahalogenodirhodates(III), [Rh2ClnBr9–n]3?, n = 0–9 On heating a mixture of the tetrabutylammonium salts (TBA)3[Rh2Cl9] and (TBA)3[Rh2Br9] at 60°C in propylenecarbonate the complete system of the mixed nonahalogenodirhodates(III) [Rh2ClnBr9–n]3?, n = 0–9 is formed. In the 103Rh nmr spectra 40 different species have been detected, 16 with two equivalent 103Rh atoms each resulting in one singlet and 24 with inequivalent 103Rh atoms each pair giving two resonances. The signals of the geometric isomeres are not resolved. All 64 expected resonances are really observed. By additional measuring of the 103Rh nmr spectra of the fractions n = 0–4 separable by ion exchange chromatography on DEAE cellulose, and utilizing characteristic increments of chemical shifts the complete and unambiguous assignment of all signals is achieved.  相似文献   

15.
The asymmetric lactone (3 S, 4 R)-3-methyl-4-benzyloxycarbonyl-2-oxetanone ( 6 ) was anionically polymerized to give an insoluble, crystalline, highly isotactic polymer with (2 S, 3 S)-benzyl β-3-methylmalate repeating units. Solubility was achieved by copolymerization of 6 with the recemic (R, S)-butyl malolactonate ( 7 ). The semicrystalline copolymer was characterized (M̄n = 107 000, Tg = 29,6°C, Tm = 161°C, [α] = 1,5 deg · dm−1 · g−1 · cm3) and its stereosequence investigated by 13C NMR.  相似文献   

16.
The reaction of Cp2Ti(Me3SiC2SiMe3) (1) with terminal disubstituted α,ω-diynes RC≡C---(CH2)n---C≡CR affords, after substitution of Me3SiC2SiMe3, bicyclic titanacyclopentadienes via intramolecular cyclization. The stability of the obtained products 2, 3 and 5 is determined by the spacer length (n = 2, 4, 5, 6). The four-membered ring derivatives (n = 2) 2a and 2b were obtained in good yield. In the case of n = 4 the bicyclic six-membered ring 3 was formed at first, which rearranges to a stable tricyclic η43-dihydroindenyl-Ti complex 4 by Cp cleavage and intramolecular C---C coupling. Complex 4 was characterized by X-ray structure analysis and NMR spectroscopy. An increase of spacer length (n > 4) provides indefinable secondary and decomposition products.

Zusammenfassung

Bei der Umsetzung von Cp2Ti(Me3SiC2SiMe3) (1) mit terminal disubstituierten α, ω-Diinen RC≡C---(CH2)n---C≡CR erhält man nach Substitution des Me3SiC2SiMe3 in Abhängigkeit von der Spacerlänge (n = 2, 4, 5, 6) über eine intramolekulare Cyclisierung die unterschiedlich stabilen bicyclischen Titanacyclopentadiene 2, 3 and 5. In guten Ausbeuten lassen sich die 4-Ring-Derivate (n = 22a und 2b isolieren. Im Falle von n = 4 entsteht zunächst das bicyclische 6-Ring-System 3, das sich durch Cp-Spaltung und intramolekulare C---C-Knüpfung in den stabilen tricyclischen η43-Dihydroindenyl-Titan-Komplex4 umlagert. Komplex 4 wurde durch Röntgenstrukturanalyse und NMR-Spektroskopie charakterisiert. Eine Erhöhung der Spacerlänge (n > 4) führt zu undefinierbaren Folge- und Zersetzungsprodukten.  相似文献   

17.
Compounds including the free or coordinated gas‐phase cations [Ag(η2‐C2H4)n]+ (n=1–3) were stabilized with very weakly coordinating anions [A]? (A=Al{OC(CH3)(CF3)2}4, n=1 ( 1 ); Al{OC(H)(CF3)2}4, n=2 ( 3 ); Al{OC(CF3)3}4, n=3 ( 5 ); {(F3C)3CO}3Al‐F‐Al{OC(CF3)3}3, n=3 ( 6 )). They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of ethene in CH2Cl2 solution. As a reference we also prepared the isobutene complex [(Me2C?CH2)Ag(Al{OC(CH3)(CF3)2}4)] ( 2 ). The compounds were characterized by multinuclear solution‐NMR, solid‐state MAS‐NMR, IR and Raman spectroscopy as well as by their single crystal X‐ray structures. MAS‐NMR spectroscopy shows that the [Ag(η2‐C2H4)3]+ cation in its [Al{OC(CF3)3}4]? salt exhibits time‐averaged D3h‐symmetry and freely rotates around its principal z‐axis in the solid state. All routine X‐ray structures (2θmax.<55°) converged within the 3σ limit at C?C double bond lengths that were shorter or similar to that of free ethene. In contrast, the respective Raman active C?C stretching modes indicated red‐shifts of 38 to 45 cm?1, suggesting a slight C?C bond elongation. This mismatch is owed to residual librational motion at 100 K, the temperature of the data collection, as well as the lack of high angular data owing to the anisotropic electron distribution in the ethene molecule. Therefore, a method for the extraction of the C?C distance in [M(C2H4)] complexes from experimental Raman data was developed and meaningful C?C distances were obtained. These spectroscopic C?C distances compare well to newly collected X‐ray data obtained at high resolution (2θmax.=100°) and low temperature (100 K). To complement the experimental data as well as to obtain further insight into bond formation, the complexes with up to three ligands were studied theoretically. The calculations were performed with DFT (BP86/TZVPP, PBE0/TZVPP), MP2/TZVPP and partly CCSD(T)/AUG‐cc‐pVTZ methods. In most cases several isomers were considered. Additionally, [M(C2H4)3] (M=Cu+, Ag+, Au+, Ni0, Pd0, Pt0, Na+) were investigated with AIM theory to substantiate the preference for a planar conformation and to estimate the importance of σ donation and π back donation. Comparing the group 10 and 11 analogues, we find that the lack of π back bonding in the group 11 cations is almost compensated by increased σ donation.  相似文献   

18.
Two CrIII‐MnIII heterobimetallic compounds, [Mn((R,R)‐5‐MeOSalcy)Cr(Tp)(CN)3 · 2CH3CN]n ( 1‐RR ) and [Mn((S,S)‐5‐MeOSalcy)Cr(Tp)(CN)3·2CH3CN]n ( 1‐SS ) [Salcy = N,N′‐(1,2‐cyclohexanediylethylene)bis(salicylideneiminato) dianion], were synthesized by using the tricyanometalate building block, [(Tp)Cr(CN)3] [Tp = tris(pyrazolyl) hydroborate] and chiral MnIII Schiff base precursors. Structural analyses and circular dichroism (CD) spectra revealed that 1‐RR and 1‐SS are a pair of enantiomers containing a neutral cyano‐bridged zigzag chain with (–Cr–C≡N–Mn–N≡C–)n as the repeating unit. Magnetic studies show that antiferromagnetic couplings between CrIII and MnIII ions occur by cyanide bridges. 1‐RR and 1‐SS present metamagnetic, spin‐canting, and antiferromagnetic order behaviors at low temperatures.  相似文献   

19.
Triphenylphosphane Nickel(0) Complexes with Isocyanide Ligands — [(RNC)nNi(PPh3)4–n] (n = 1–3) Synthesis and properties of the isocyanide triphenylphosphane nickel(0) complexes [(RNC)Ni(PPh3)3], [(RNC)2Ni(PPh3)2] and [(RNC)3Ni(PPh3)] (R = tBu, Cy, PhCH2, p-TosCH2) are described. I.r. and 31P n.m.r. spectra were recorded and the X-ray crystal structure of [(PhCH2NC)2Ni(PPh3)2] was determined.  相似文献   

20.
The complexes of the type [ReH(CO)5–n(PMe3)n] (n = 4, 3) were reacted with aldehydes, CO2, and RC?CCOOMe (R = H, Me) to establish a phosphine-substitutional effect on the reactivity of the Re–H bond. In the series 1–3 , benzaldehyde showed conversion with only 3 to afford a (benzyloxy)carbonyltetrakis(trimethylphosphine)rhenium complex 4 . Pyridine-2-carbaldehyde allowed reaction with all hydrides 1–3 . With 1 and 2 , the same dicarbonyl[(pyridin-2-yl)methoxy-O, N]bis(trimethylphosphine)rhenium 5b was formed with the intermediacy of a [(pyridin-2-yl)methoxy-O]-ligated species and extrusion of CO or PMe3, respectively. The analogous conversion of 3 afforded the carbonyl[(pyridin-2-yl)methoxy-O,N]tris(trimethylphosphine)rhenium ( 1 ) 7b . While 1 did not react with CO2, 2 and 3 yielded under relatively mild conditions the formato-ligated [Re(HCO2)(CO)(L)(PMe3)3] species ( 8 (L = CO) and 9 (L = PMe3)). Methyl propiolate and methyl butynoate were transformed, in the presence of 1 , to [Re{C(CO2Me)?CHR}(CO)3(PMe3)2] systems ( 10a (R = H), and 10b (R = Me)), with prevailing α-metallation and trans-insertion stereochemistry. Similarly, HC≡CCO2Me afforded with 2 and 3 , the α-metallation products [Re{C(CO2Me)?CH2}(CO)(L)(PMe3)3] 11 (L = CO) and 12 (L = PMe3). The methyl butyonate insertion into 2 resulted in formation of a mixture of the (Z)- and (E)-isomers of [Re{C(CO2Me)?CHMe} (CO)2(PMe3)3] ( 13a , b ). In the case of the conversion of 3 with MeC?CCO2Me, a Re–H cis-addition product [Re{(E)-C(CO2Me)?CHMe}(CO)(PMe3)4] ( 14 ) was selectively obtained. Complex 11 was characterized by an X-ray crystal-structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号