首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
王在华  李俊余 《力学学报》2010,42(5):933-942
控制理论中广泛采用负反馈,而正反馈的应用不多, 一个重要原因是正反馈将系统的变化放大而使系统的稳定性变差. 如果反馈环节具有时滞, 那么正反馈未必使系统稳定性变差. 本文以线性振动系统为例, 采用稳定性切换方法和利用确定时滞系统稳定性的最大实部特征根, 详细研究了时滞状态正反馈在镇定系统不稳定运动和改善系统稳定性方面的作用. 我们发现,时滞位移正反馈明显优于时滞位移负反馈, 表现为: (1). 正反馈控制可以用较小的时滞去镇定不稳定运动和改善系统稳定性; (2). 正反馈控制可容许的时滞范围很大, 而负反馈控制的可容许时滞范围很小; (3). 正反馈对应的闭环系统的最大实部特征根的实部的极小值可显著小于负反馈对应的闭环系统的最大实部特征根的实部的极小值, 因而在相同的初始条件下, 正反馈作用下的闭环系统比之负反馈作用下的闭环系统可以更快地稳定到平衡点. 我们还发现, 对时滞速度反馈与时滞加速度反馈来说, 负反馈优于正反馈; 而对相同的反馈增益, 时滞位移正反馈优于时滞速度正反馈和时滞加速度正反馈. 关键字镇定,振动控制,时滞正反馈, 稳定性切换, 特征根   相似文献   

2.
This paper presents new observations of delayed AD (acceleration-derivative) controller in active vibration control and in bifurcation control of a Duffing oscillator. Based on the stability analysis of the linear delayed oscillator, it is found that combination of the two delays in acceleration feedback and velocity feedback has a significant influence on the stable region in the parameter plane of the gains. By calculating the real part of the rightmost characteristic roots of the controlled oscillator with fixed delays, it is shown that a delayed acceleration feedback with positive gain can work much better than the corresponding delayed negative acceleration feedback, which is used in classic control theory. For given feedback gains, by calculating the critical delay values, it is shown that a delayed positive acceleration feedback can result in a much larger stable delay interval than the corresponding delayed negative acceleration feedback does. As an application of these results to a delayed Duffing oscillator with acceleration-derivative feedback, a delayed positive acceleration feedback can be well used to postpone the occurrence of Hopf bifurcation in the delayed nonlinear oscillators.  相似文献   

3.
Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing the maximal real part of characteristic roots of the system. A DSP-based experiment system is introduced. Simulation and experimental results indicate that the delayed positive feedback control may effectively reduce the beam vibration if time delay is appropriately selected.  相似文献   

4.
This paper studies the stabilization to an inverted pendulum under a delayed proportional-derivative-acceleration (PDA) feedback, which can be used to understand human balance in quiet standing. The closed-loop system is described by a neutral delay differential equation (NDDE). The optimal feedback gains (OFGs) that make the exponential decaying rate maximized are determined when the characteristic equation of the closed-loop has a repeated real root with multiplicity 4. Such a property is called multiplicity-induced dominancy of time-delay systems, and has been discussed intensively by many authors for retarded delay differential equations (RDDEs). This paper shows that multiplicity-induced dominancy can be achieved in NDDEs. In addition, the OFGs are delay-dependent, and decrease sharply to small numbers correspondingly as the delay increases from zero and varies slowly with respect to moderate delays. Thus, the inverted pendulum can be well-stabilized with moderate delays and relatively small feedback gains. The result might be understandable that the elderly with obvious response delays can be well-stabilized with a delayed PDA feedback controller.  相似文献   

5.
The stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated in this paper. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Bifurcation diagrams and the dynamics of the delayed closed-loop system are verified using continuation software and with numerical simulations.  相似文献   

6.
This paper is concerned with the problems of output feedback control for uncertain discrete time-delay systems with input saturation. The delay partitioning approach is proposed to obtain new stability criteria. The dynamic output feedback controller is designed based on a linear matrix inequality framework. A sufficient condition is developed, which guarantees the existence of dynamic output feedback controllers such that all trajectories of the closed-loop system starting from an admissible initial condition domain converge to a smaller ellipsoid. Simulation examples are provided to show the potential of the proposed techniques.  相似文献   

7.
The goal of this paper is to study stabilization techniques for a system described by nonlinear second-order differential equations. The problem is to determine the feedback control as a function of the state variables. It is shown that the following controllers can asymptotically stabilize the system: linear position feedback, linear velocity feedback and a group of nonlinear feedbacks. The stability of the corresponding closed-loop system is proved by imposing a suitable Lyapunov function and then using LaSalle’s invariance principle. The results of numerical computations are included to verify theoretical analysis and mathematical formulation. Some application examples from robotics, mechanics and electronics are presented.  相似文献   

8.
The local asymptotic stability and stability switches of the positive equilibrium in a logistic population model with mixed instantaneous and delayed density dependence is analyzed. It is shown that when the delayed dependence is more dominant, either the positive equilibrium becomes unstable for all large delay values, or the stability of equilibrium switches back and force several times as the delay value increases. Compared with the logistic model with the instantaneous term and a delayed term, our finding here is that the incorporation of another delayed term can lead to the occurrence of multiple stability switches.  相似文献   

9.
Spectral abscissa(SA) is defined as the real part of the rightmost characteristic root(s) of a dynamical system, and it can be regarded as the decaying rate of the system, the smaller the better from the viewpoint of fast stabilization. Based on the Puiseux series expansion of complex-valued functions, this paper shows that the SA can be minimized within a given delay interval at values where the characteristic equation has repeated roots with multiplicity 2 or 3. Four sufficient conditions in terms of the partial derivatives of the characteristic function are established for testing whether the SA is minimized or not, and they can be tested directly and easily.  相似文献   

10.
In this paper, we investigate the stability and bifurcation of a class of coupled nonlinear relative rotation system with multi-time delay feedbacks. Using dissipative system Lagrange equation, the dynamics equation of coupled nonlinear relative rotation system with three masses is established. The dynamical behaviors of the system under multi-time delay feedbacks, with two state variables, are discussed. First, characteristic roots and the stable regions of time delay are determined by direct method. The relation between two time delays ratio or time delay feedbacks gains and the stable regions of time delay is analyzed. Second, the direction and stability of Hopf bifurcation are decided by normal form theorem and center manifold argument. Finally, numerical simulation can confirm the validity of the conclusion.  相似文献   

11.
In this paper, we study the stability of n-dimensional linear fractional differential equation with time delays, where the delay matrix is defined in (R +)n×n. By using the Laplace transform, we introduce a characteristic equation for the above system with multiple time delays. We discover that if all roots of the characteristic equation have negative parts, then the equilibrium of the above linear system with fractional order is Lyapunov globally asymptotical stable if the equilibrium exist that is almost the same as that of classical differential equations. As its an application, we apply our theorem to the delayed system in one spatial dimension studied by Chen and Moore [Nonlinear Dynamics 29, 2002, 191] and determine the asymptotically stable region of the system. We also deal with synchronization between the coupled Duffing oscillators with time delays by the linear feedback control method and the aid of our theorem, where the domain of the control-synchronization parameters is determined.  相似文献   

12.
This paper presents a detailed analysis on the dynamics of a delayed oscillator with negative damping and delayed feedback control. Firstly, a linear stability analysis for the trivial equilibrium is given. Then, the direction of Hopf bifurcation and stability of periodic solutions bifurcating from trivial equilibrium are determined by using the normal form theory and center manifold theorem. It shows that with properly chosen delay and gain in the delayed feedback path, this controlled delayed system may have stable equilibrium, or periodic solutions, or quasi-periodic solutions, or coexisting stable solutions. In addition, the controlled system may exhibit period-doubling bifurcation which eventually leads to chaos. Finally, some new interesting phenomena, such as the coexistence of periodic orbits and chaotic attractors, have been observed. The results indicate that delayed feedback control can make systems with state delay produce more complicated dynamics.  相似文献   

13.
The time-delayed feedback control for a supersonic airfoil results in interesting aeroelastic behaviors. The effect of time delay on the aeroelastic dynamics of a two-dimensional supersonic airfoil with a feedback control surface is investigated. Specifically, the case of a 3-dof system is considered in detail, where the structural nonlinearity is introduced in the mathematical model. The stability analysis is conducted for the linearized system. It is shown that there is a small parameter region for delay-independently stability of the system. Once the controlled system with time delay is not delay-independently stable, the system may undergo the stability switches with the variation of the time delay. The nonlinear aeroelastic system undergoes a sequence of Hopf bifurcations if the time delay passes the critical values. Using the normal form method and center manifold theory, the direction of the Hopf bifurcation and stability of Hopf-bifurcating periodic solutions are determined. Numerical simulations are performed to illustrate the obtained results.  相似文献   

14.
This paper is concerned with pure delayed non-fragile control for an offshore steel jacket platform subject to non-linear self-excited wave force. By purposefully introducing a proper time-delay into control channel, a pure delayed non-fragile controller (DNFC) is proposed to improve performance of the offshore steel jacket platform. The positive effects of time-delays on non-fragile stabilization control for the system are investigated. It is shown through simulation results that (i) the DNFC and the delay-free non-fragile controller are capable of attenuating the vibration of the offshore platform to almost the same level, while the required control force under the DNFC is less than that under the delay-free one; and (ii) both the oscillation amplitudes of the offshore platform and the ranges of the control force under the pure delayed state feedback controller (DSFC) are smaller than the ones under the non-linear controller and the dynamic output feedback controller; and (iii) the oscillation amplitudes of the offshore platform under the DSFC are almost the same as the ones under integral sliding mode controller and the delayed dynamic output feedback controller, while the control force required by the former is less than the one by the latter.  相似文献   

15.
Yan  Xiang-Ping  Liu  Fang-Bin  Zhang  Cun-Hua 《Nonlinear dynamics》2020,99(3):2011-2030

This paper takes into consideration a damped harmonic oscillator model with delayed feedback. After transforming the model into a system of first-order delayed differential equations with a single discrete delay, the single stability switch and multiple stability switches phenomena as well as the existence of Hopf bifurcation of the zero equilibrium of the system are explored by taking the delay as the bifurcation parameter and analyzing in detail the associated characteristic equation. Particularly, in view of the normal form method and the center manifold reduction for retarded functional differential equations, the explicit formula determining the properties of Hopf bifurcation including the direction of the bifurcation and the stability of the bifurcating periodic solutions are given. In order to check the rationality of our theoretical results, numerical simulations for some specific examples are also carried out by means of the MATLAB software package.

  相似文献   

16.
非自治时滞反馈控制系统的周期解分岔和混沌   总被引:9,自引:0,他引:9  
徐鉴  陆启韶 《力学学报》2003,35(4):443-451
研究时滞反馈控制对具有周期外激励非线性系统复杂性的影响机理,研究对应的线性平衡态失稳的临界边界,将时滞非线性控制方程化为泛函微分方程,给出由Hopf分岔产生的周期解的解析形式.通过分析周期解的稳定性得到周期解的失稳区域,使用数值分析观察到时滞在该区域可以导致系统出现倍周期运动、锁相运动、概周期运动和混沌运动以及两条通向混沌的道路:倍周期分岔和环面破裂.其结果表明,时滞在控制系统中可以作为控制和产生系统的复杂运动的控制“开关”.  相似文献   

17.
Zhang  Liuliu  Liu  Songsong  Hua  Changchun 《Nonlinear dynamics》2022,107(3):2421-2428

This paper deals with control design for interconnected nonlinear systems with time-varying input delay. Based on the truncated prediction of the system state over the delay period, the state feedback control law is constructed. In the framework of the Lyapunov–Krasovskii function, the stability equations of closed-loop system under state feedback law are established, and the feasibility of the controller is transformed into the problem of establishing a set of linear matrix inequality (LMI) conditions. Based on the Lyapunov stability theorem, it is proved that the closed-loop system is asymptotically stable. Finally, a simulation example is provided to demonstrate the effectiveness of the control scheme.

  相似文献   

18.
Class-B laser systems can be described by a set of slow-fast differential equations with a small parameter, and they exhibit pulsating oscillations in common. In this paper, the impact of the delayed feedback on the pulsating solutions is investigated. At first, a careful analysis of the local stability and bifurcation shows the existence of a series of Hopf bifurcations and double Hopf bifurcations when the strength of the delayed feedback or the delay increases, by means of stability switches. Then, an application of the geometric singular perturbation theory reveals the evolutional mechanism of the pulsating solutions from transients to stationary states, and the effect of the delayed feedback upon the pulsating solutions is examined.  相似文献   

19.
Xiao  Min  Ho  Daniel W. C.  Cao  Jinde 《Nonlinear dynamics》2009,58(1-2):319-344

We show that time-delayed feedback methods, which have successfully been used to control unstable steady states or periodic orbits, provide a tool to control Hopf bifurcation for a small-world network model with nonlinear interactions and time delays. We choose the interaction strength parameter as a bifurcation parameter. Without control, bifurcation will occur early; meanwhile, the model can maintain a stationary total influenced volume only in a certain domain of the interaction strength parameter. However, outside of this domain the model still possesses a stable total influenced volume that can be guaranteed by delayed feedback perturbation, and the onset of the Hopf bifurcation is postponed. The feedback perturbation vanishes if the stabilization is successful and thus the domain of stability can be extended under only small control force. We present an analytical investigation of the feedback scheme using characteristic equation and discuss effects of both a low-pass filter included in the control loop and nonzero latency times associated with generation and injection of the feedback signal.

  相似文献   

20.
This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms, and with linear delayed velocity feedback. The analysis indicates that for a sufficiently large velocity feedback gain, the equilibrium of the system may undergo a number of stability switches with an increase of time delay, and then becomes unstable forever. At each critical value of time delay for which the system changes its stability, a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay. The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability. It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions. The project supported by the National Natural Science Foundation of China (19972025)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号