首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We develop a theory for double diffusive convection in a double porosity material along the Brinkman scheme. The Soret effect is included whereby a temperature gradient may directly influence salt concentration. The boundary conditions on the temperature and salt fields are of general Robin type. A number of a priori estimates are established whereby, through energy arguments, we prove continuous dependence of the solution on the Soret coefficient and on the coefficients in the boundary conditions in the L2- norm.  相似文献   

2.
《Applied Mathematical Modelling》2014,38(9-10):2345-2352
The linear stability of triply diffusive convection in a binary Maxwell fluid saturated porous layer is investigated. Applying the normal mode method theory, the criterion for the onset of stationary and oscillatory convection is obtained. The modified Darcy–Maxwell model is used as the analysis model, this allows us to make a thorough investigation of the processes of viscoelasticity and diffusions that causes the convection to set in through oscillatory rather than stationary. The effects of Vadasz number, normalized porosity parameter, relaxation parameter, Lewis number and solute Rayleigh number on the system are presented numerically and graphically.  相似文献   

3.
The onset of Marangoni convection in a non-reactive binary fluid layer in the presence of throughflow and Soret effect is determined. The bottom boundary of the fluid layer is assumed to be either conducting or insulating to temperature and solute concentration perturbations while the top boundary is free and insulating. The linear stability analysis is followed and an exact solution is obtained for the corresponding eigenvalue problem by assuming that stationary convection is exhibited at the neutral state. The contribution from the Soret effect is seen only when the throughflow is weak, but however for a wider range of upward throughflow when the bottom boundary is conducting. The instability gets advanced/delayed when the Soret parameter assumes negative/positive values. The results agree well with the existing results in the literature for some particular cases.  相似文献   

4.
In this paper we investigate the influence of viscous dissipation and Soret effect on natural convection heat and mass transfer from vertical cone in a non-Darcy porous media saturated with non-Newtonian fluid. The surface of the cone and the ambient medium are maintained at constant but different levels of temperature and concentration. The Ostwald-de Waele power law model is used to characterize the non-Newtonian fluid behavior. The governing equations are non-dimensionalized into non-similar form and then solved numerically by local non-similarity method. The effect of non-Darcy parameter, viscous dissipation parameter, Soret parameter, buoyancy ratio, Lewis number and the power-law index parameter on the temperature and concentration field as well as on the heat and mass transfer coefficients is analyzed.  相似文献   

5.
The non‐linear stability of plane parallel shear flows in an incompressible homogeneous fluid heated from below and saturating a porous medium is studied by the Lyapunov direct method.In the Oberbeck–Boussinesq–Brinkman (OBB) scheme, if the inertial terms are negligible, as it is widely assumed in literature, we find global non‐linear exponential stability (GNES) independent of the Reynolds number R. However, if these terms are retained, we find a restriction on R (depending on the inertial convective coefficient) both for a homogeneous fluid and a mixture heated and salted from below. In the case of a mixture, when the normalized porosity ε is equal to one, the laminar flows are GNES for small R and for heat Rayleigh numbers less than the critical Rayleigh numbers obtained for the motionless state. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The effect of rotation on the onset of double diffusive convection in a horizontal couple stress fluid-saturated porous layer, which is heated and salted from below, is studied analytically using both linear and weak nonlinear stability analyses. The extended Darcy model, which includes the time derivative and Coriolis terms, has been employed in the momentum equation. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. The effect of Taylor number, couple stress parameter, solute Rayleigh number, Lewis number, Darcy–Prandtl number, and normalized porosity on the stationary, oscillatory, and finite amplitude convection is shown graphically. It is found that the rotation, couple stress parameter and solute Rayleigh number have stabilizing effect on the stationary, oscillatory, and finite amplitude convection. The Lewis number has a stabilizing effect in the case of stationary and finite amplitude modes, with a destabilizing effect in the case of oscillatory convection. The Darcy–Prandtl number and normalized porosity advances the onset of oscillatory convection. A weak nonlinear theory based on the truncated representation of Fourier series method is used to find the finite amplitude Rayleigh number and heat and mass transfer. The transient behavior of the Nusselt number and Sherwood number is investigated by solving the finite amplitude equations using Runge–Kutta method.  相似文献   

7.
The fully developed electrically conducting micropolar fluid flow and heat transfer along a semi-infinite vertical porous moving plate is studied including the effect of viscous heating and in the presence of a magnetic field applied transversely to the direction of the flow. The Darcy-Brinkman-Forchheimer model which includes the effects of boundary and inertia forces is employed. The differential equations governing the problem have been transformed by a similarity transformation into a system of non-dimensional differential equations which are solved numerically by element free Galerkin method. Profiles for velocity, microrotation and temperature are presented for a wide range of plate velocity, viscosity ratio, Darcy number, Forchhimer number, magnetic field parameter, heat absorption parameter and the micropolar parameter. The skin friction and Nusselt numbers at the plates are also shown graphically. The present problem has significant applications in chemical engineering, materials processing, solar porous wafer absorber systems and metallurgy.  相似文献   

8.
The effects of temperature dependent viscosity and non-uniform heat source/sink on non-Darcy MHD mixed convection boundary layer flow over a vertical stretching sheet embedded in a fluid-saturated porous media is studied in this paper. Boundary layer equations are transformed into ordinary differential equations using self-similarity transformation which are then solved numerically using fifth-order Runge-Kutta-Fehlberg method with shooting technique for various values of the governing parameters. The effects of variable viscosity, porosity, electric field parameter, non-uniform heat source/sink parameters, Soret number and Schmidt number on concentration profiles are analyzed and discussed. Favorable comparisons with previously published work on various special cases of the problem are obtained. Numerical results for variation of the local Sherwood number with buoyancy parameter, Schmidt number, and Soret number are reported graphically to show some interesting aspects of the physical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号