共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Mathematical Modelling》2014,38(11-12):2800-2818
Electrical discharge machining (EDM) is inherently a stochastic process. Predicting the output of such a process with reasonable accuracy is rather difficult. Modern learning based methodologies, being capable of reading the underlying unseen effect of control factors on responses, appear to be effective in this regard. In the present work, support vector machine (SVM), one of the supervised learning methods, is applied for developing the model of EDM process. Gaussian radial basis function and ε-insensitive loss function are used as kernel function and loss function respectively. Separate models of material removal rate (MRR) and average surface roughness parameter (Ra) are developed by minimizing the mean absolute percentage error (MAPE) of training data obtained for different set of SVM parameter combinations. Particle swarm optimization (PSO) is employed for the purpose of optimizing SVM parameter combinations. Models thus developed are then tested with disjoint testing data sets. Optimum parameter settings for maximum MRR and minimum Ra are further investigated applying PSO on the developed models. 相似文献
2.
Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system 总被引:1,自引:0,他引:1
Qi Wu 《Journal of Computational and Applied Mathematics》2010,233(10):2481-12093
Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods. 相似文献
3.
Memetic particle swarm optimization 总被引:2,自引:0,他引:2
We propose a new Memetic Particle Swarm Optimization scheme that incorporates local search techniques in the standard Particle
Swarm Optimization algorithm, resulting in an efficient and effective optimization method, which is analyzed theoretically.
The proposed algorithm is applied to different unconstrained, constrained, minimax and integer programming problems and the
obtained results are compared to that of the global and local variants of Particle Swarm Optimization, justifying the superiority
of the memetic approach. 相似文献
4.
Jian Hu Zhiqiang WangShaojie Qiao JianChao Gan 《Applied mathematics and computation》2011,217(21):8655-8670
The particle swarm optimization (PSO) computational method has recently become popular. However, it has limitations. It may trap into local optima and cause the premature convergence phenomenon, especially for multimodal and high-dimensional problems. In this paper, we focus on investigating the fitness evaluation in terms of a particle’s position. Particularly, we find that the fitness evaluation strategy in the standard PSO has two drawbacks, i.e., “two steps forward and one step back” and “two steps back and one step forward”. In addition, we propose a general fitness evaluation strategy (GFES), by which a particle is evaluated in multiple subspaces and different contexts in order to take diverse paces towards the destination position. As demonstrations of GFES, a series of PSOs with GFES are presented. Experiments are conducted on several benchmark optimization problems. The results show that GFES is effective at handling multimodal and high-dimensional problems. 相似文献
5.
Balanced fuzzy particle swarm optimization 总被引:1,自引:0,他引:1
Amir Robati Gholam Abbas BaraniHossein Nezam Abadi Pour Mohammad Javad FadaeeJavad Rahimi Pour Anaraki 《Applied Mathematical Modelling》2012,36(5):2169-2177
In the present study an extension of particle swarm optimization (PSO) algorithm which is in conformity with actual nature is introduced for solving combinatorial optimization problems. Development of this algorithm is essentially based on balanced fuzzy sets theory. The classical fuzzy sets theory cannot distinguish differences between positive and negative information of membership functions, while in the new method both kinds of information “positive and negative” about membership function are equally important. The balanced fuzzy particle swarm optimization algorithm is used for fundamental optimization problem entitled traveling salesman problem (TSP). For convergence inspecting of new algorithm, method was used for TSP problems. Convergence curves were represented fast convergence in restricted and low iterations for balanced fuzzy particle swarm optimization algorithm (BF-PSO) comparison with fuzzy particle swarm optimization algorithm (F-PSO). 相似文献
6.
A hybrid simplex search and particle swarm optimization for unconstrained optimization 总被引:1,自引:0,他引:1
This paper proposes the hybrid NM-PSO algorithm based on the Nelder–Mead (NM) simplex search method and particle swarm optimization (PSO) for unconstrained optimization. NM-PSO is very easy to implement in practice since it does not require gradient computation. The modification of both the Nelder–Mead simplex search method and particle swarm optimization intends to produce faster and more accurate convergence. The main purpose of the paper is to demonstrate how the standard particle swarm optimizers can be improved by incorporating a hybridization strategy. In a suite of 20 test function problems taken from the literature, computational results via a comprehensive experimental study, preceded by the investigation of parameter selection, show that the hybrid NM-PSO approach outperforms other three relevant search techniques (i.e., the original NM simplex search method, the original PSO and the guaranteed convergence particle swarm optimization (GCPSO)) in terms of solution quality and convergence rate. In a later part of the comparative experiment, the NM-PSO algorithm is compared to various most up-to-date cooperative PSO (CPSO) procedures appearing in the literature. The comparison report still largely favors the NM-PSO algorithm in the performance of accuracy, robustness and function evaluation. As evidenced by the overall assessment based on two kinds of computational experience, the new algorithm has demonstrated to be extremely effective and efficient at locating best-practice optimal solutions for unconstrained optimization. 相似文献
7.
The particle swarm optimization (PSO) technique is a powerful stochastic evolutionary algorithm that can be used to find the global optimum solution in a complex search space. This paper presents a variation on the standard PSO algorithm called the rank based particle swarm optimizer, or PSOrank, employing cooperative behavior of the particles to significantly improve the performance of the original algorithm. In this method, in order to efficiently control the local search and convergence to global optimum solution, the γ best particles are taken to contribute to the updating of the position of a candidate particle. The contribution of each particle is proportional to its strength. The strength is a function of three parameters: strivness, immediacy and number of contributed particles. All particles are sorted according to their fitness values, and only the γ best particles will be selected. The value of γ decreases linearly as the iteration increases. A time-varying inertia weight decreasing non-linearly is introduced to improve the performance. PSOrank is tested on a commonly used set of optimization problems and is compared to other variants of the PSO algorithm presented in the literature. As a real application, PSOrank is used for neural network training. The PSOrank strategy outperformed all the methods considered in this investigation for most of the functions. Experimental results show the suitability of the proposed algorithm in terms of effectiveness and robustness. 相似文献
8.
An algorithm called DE-PSO is proposed which incorporates concepts from DE and PSO, updating particles not only by DE operators but also by mechanisms of PSO. The proposed algorithm is tested on several benchmark functions. Numerical comparisons with different hybrid meta-heuristics demonstrate its effectiveness and efficiency. 相似文献
9.
Inspired by the migratory behavior in the nature, a novel particle swarm optimization algorithm based on particle migration (MPSO) is proposed in this work. In this new algorithm, the population is randomly partitioned into several sub-swarms, each of which is made to evolve based on particle swarm optimization with time varying inertia weight and acceleration coefficients (LPSO-TVAC). At periodic stage in the evolution, some particles migrate from one complex to another to enhance the diversity of the population and avoid premature convergence. It further improves the ability of exploration and exploitation. Simulations for benchmark test functions illustrate that the proposed algorithm possesses better ability to find the global optima than other variants and is an effective global optimization tool. 相似文献
10.
Huidae Cho Dongkyun Kim Francisco Olivera Seth D. Guikema 《European Journal of Operational Research》2011,213(1):649-23
In this paper, we present a novel multi-modal optimization algorithm for finding multiple local optima in objective function surfaces. We build from Species-based particle swarm optimization (SPSO) by using deterministic sampling to generate new particles during the optimization process, by implementing proximity-based speciation coupled with speciation of isolated particles, and by including “turbulence regions” around already found solutions to prevent unnecessary function evaluations. Instead of using error threshold values, the new algorithm uses the particle’s experience, geometric mean, and “exclusion factor” to detect local optima and stop the algorithm. The performance of each extension is assessed with leave-it-out tests, and the results are discussed. We use the new algorithm called Isolated-Speciation-based particle swarm optimization (ISPSO) and a benchmark algorithm called Niche particle swarm optimization (NichePSO) to solve a six-dimensional rainfall characterization problem for 192 rain gages across the United States. We show why it is important to find multiple local optima for solving this real-world complex problem by discussing its high multi-modality. Solutions found by both algorithms are compared, and we conclude that ISPSO is more reliable than NichePSO at finding optima with a significantly lower objective function value. 相似文献
11.
In this paper, a new method named MSSE-PSO (master-slave swarms shuffling evolution algorithm based on particle swarm optimization) is proposed. Firstly, a population of points is sampled randomly from the feasible space, and then partitioned into several sub-swarms (one master swarm and other slave swarms). Each slave swarm independently executes PSO or its variants, including the update of particles’ position and velocity. For the master swarm, the particles enhance themselves based on the social knowledge of master swarm and that of slave swarms. At periodic stage in the evolution, the master swarm and the whole slave swarms are forced to mix, and points are then reassigned to several sub-swarms to ensure the share of information. The process is repeated until a user-defined stopping criterion is reached. The tests of numerical simulation and the case study on hydrological model show that MSSE-PSO remarkably improves the accuracy of calibration, reduces the time of computation and enhances the performance of stability. Therefore, it is an effective and efficient global optimization method. 相似文献
12.
《Journal of computational science》2014,5(2):258-268
This paper proposes a new co-swarm PSO (CSHPSO) for constrained optimization problems, which is obtained by hybridizing the recently proposed shrinking hypersphere PSO (SHPSO) with the differential evolution (DE) approach. The total swarm is subdivided into two sub swarms in such a way that the first sub swarms uses SHPSO and second sub swarms uses DE. Experiments are performed on a state-of-the-art problems proposed in IEEE CEC 2006. The results of the CSHPSO is compared with SHPSO and DE in a variety of fashions. A statistical approach is applied to provide the significance of the numerical experiments. In order to further test the efficacy of the proposed CSHPSO, an economic dispatch (ED) problem with valve points effects for 40 generating units is solved. The results of the problem using CSHPSO is compared with SHPSO, DE and the existing solutions in the literature. It is concluded that CSHPSO is able to give the minimal cost for the ED problem in comparison with the other algorithms considered. Hence, CSHPSO is a promising new co-swarm PSO which can be used to solve any real constrained optimization problem. 相似文献
13.
Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems 总被引:2,自引:0,他引:2
W.F. Abd-El-WahedA.A. Mousa M.A. El-Shorbagy 《Journal of Computational and Applied Mathematics》2011,235(5):1446-1453
Heuristic optimization provides a robust and efficient approach for solving complex real-world problems. The aim of this paper is to introduce a hybrid approach combining two heuristic optimization techniques, particle swarm optimization (PSO) and genetic algorithms (GA). Our approach integrates the merits of both GA and PSO and it has two characteristic features. Firstly, the algorithm is initialized by a set of random particles which travel through the search space. During this travel an evolution of these particles is performed by integrating PSO and GA. Secondly, to restrict velocity of the particles and control it, we introduce a modified constriction factor. Finally, the results of various experimental studies using a suite of multimodal test functions taken from the literature have demonstrated the superiority of the proposed approach to finding the global optimal solution. 相似文献
14.
Self-adaptive velocity particle swarm optimization for solving constrained optimization problems 总被引:4,自引:0,他引:4
Particle swarm optimization (PSO) is originally developed as an unconstrained optimization technique, therefore lacks an explicit
mechanism for handling constraints. When solving constrained optimization problems (COPs) with PSO, the existing research
mainly focuses on how to handle constraints, and the impact of constraints on the inherent search mechanism of PSO has been
scarcely explored. Motivated by this fact, in this paper we mainly investigate how to utilize the impact of constraints (or
the knowledge about the feasible region) to improve the optimization ability of the particles. Based on these investigations,
we present a modified PSO, called self-adaptive velocity particle swarm optimization (SAVPSO), for solving COPs. To handle
constraints, in SAVPSO we adopt our recently proposed dynamic-objective constraint-handling method (DOCHM), which is essentially
a constituent part of the inherent search mechanism of the integrated SAVPSO, i.e., DOCHM + SAVPSO. The performance of the
integrated SAVPSO is tested on a well-known benchmark suite and the experimental results show that appropriately utilizing
the knowledge about the feasible region can substantially improve the performance of the underlying algorithm in solving COPs. 相似文献
15.
Xiaoyuan ZhangJianzhong Zhou Changqin WangChaoshun Li Lixiang Song 《Applied mathematics and computation》2012,218(9):4973-4987
Support vector machine (SVM) is a popular tool for machine learning task. It has been successfully applied in many fields, but the parameter optimization for SVM is an ongoing research issue. In this paper, to tune the parameters of SVM, one form of inter-cluster distance in the feature space is calculated for all the SVM classifiers of multi-class problems. Inter-cluster distance in the feature space shows the degree the classes are separated. A larger inter-cluster distance value implies a pair of more separated classes. For each classifier, the optimal kernel parameter which results in the largest inter-cluster distance is found. Then, a new continuous search interval of kernel parameter which covers the optimal kernel parameter of each class pair is determined. Self-adaptive differential evolution algorithm is used to search the optimal parameter combination in the continuous intervals of kernel parameter and penalty parameter. At last, the proposed method is applied to several real word datasets as well as fault diagnosis for rolling element bearings. The results show that it is both effective and computationally efficient for parameter optimization of multi-class SVM. 相似文献
16.
An improved particle swarm optimization algorithm combined with piecewise linear chaotic map 总被引:3,自引:0,他引:3
Particle swarm optimization (PSO) has gained increasing attention in tackling complex optimization problems. Its further superiority when hybridized with other search techniques is also shown. Chaos, with the properties of ergodicity and stochasticity, is definitely a good candidate, but currently only the well-known logistic map is prevalently used. In this paper, the performance and deficiencies of schemes coupling chaotic search into PSO are analyzed. Then, the piecewise linear chaotic map (PWLCM) is introduced to perform the chaotic search. An improved PSO algorithm combined with PWLCM (PWLCPSO) is proposed subsequently, and experimental results verify its great superiority. 相似文献
17.
Li-Yeh Chuang 《Applied mathematics and computation》2011,217(16):6900-6916
Chaotic catfish particle swarm optimization (C-CatfishPSO) is a novel optimization algorithm proposed in this paper. C-CatfishPSO introduces chaotic maps into catfish particle swarm optimization (CatfishPSO), which increase the search capability of CatfishPSO via the chaos approach. Simple CatfishPSO relies on the incorporation of catfish particles into particle swarm optimization (PSO). The introduced catfish particles improve the performance of PSO considerably. Unlike other ordinary particles, the catfish particles initialize a new search from extreme points of the search space when the gbest fitness value (global optimum at each iteration) has not changed for a certain number of consecutive iterations. This results in further opportunities of finding better solutions for the swarm by guiding the entire swarm to promising new regions of the search space and accelerating the search. The introduced chaotic maps strengthen the solution quality of PSO and CatfishPSO significantly. The resulting improved PSO and CatfishPSO are called chaotic PSO (C-PSO) and chaotic CatfishPSO (C-CatfishPSO), respectively. PSO, C-PSO, CatfishPSO, C-CatfishPSO, as well as other advanced PSO procedures from the literature were extensively compared on several benchmark test functions. Statistical analysis of the experimental results indicate that the performance of C-CatfishPSO is better than the performance of PSO, C-PSO, CatfishPSO and that C-CatfishPSO is also superior to advanced PSO methods from the literature. 相似文献
18.
19.
The bin packing problem is widely found in applications such as loading of tractor trailer trucks, cargo airplanes and ships, where a balanced load provides better fuel efficiency and safer ride. In these applications, there are often conflicting criteria to be satisfied, i.e., to minimize the bins used and to balance the load of each bin, subject to a number of practical constraints. Unlike existing studies that only consider the issue of minimum bins, a multiobjective two-dimensional mathematical model for bin packing problems with multiple constraints (MOBPP-2D) is formulated in this paper. To solve MOBPP-2D problems, a multiobjective evolutionary particle swarm optimization algorithm (MOEPSO) is proposed. Without the need of combining both objectives into a composite scalar weighting function, MOEPSO incorporates the concept of Pareto’s optimality to evolve a family of solutions along the trade-off surface. Extensive numerical investigations are performed on various test instances, and their performances are compared both quantitatively and statistically with other optimization methods to illustrate the effectiveness and efficiency of MOEPSO in solving multiobjective bin packing problems. 相似文献
20.
A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design 总被引:1,自引:0,他引:1
Multi-objective particle swarm optimization (MOPSO) is an optimization technique inspired by bird flocking, which has been steadily gaining attention from the research community because of its high convergence speed. On the other hand, in the face of increasing complexity and dimensionality of today’s application coupled with its tendency of premature convergence due to the high convergence speeds, there is a need to improve the efficiency and effectiveness of MOPSO. In this paper a competitive and cooperative co-evolutionary approach is adapted for multi-objective particle swarm optimization algorithm design, which appears to have considerable potential for solving complex optimization problems by explicitly modeling the co-evolution of competing and cooperating species. The competitive and cooperative co-evolution model helps to produce the reasonable problem decompositions by exploiting any correlation, interdependency between components of the problem. The proposed competitive and cooperative co-evolutionary multi-objective particle swarm optimization algorithm (CCPSO) is validated through comparisons with existing state-of-the-art multi-objective algorithms using established benchmarks and metrics. Simulation results demonstrated that CCPSO shows competitive, if not better, performance as compared to the other algorithms. 相似文献