首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider a GI/M/1 queue with single working vacation. During the vacation period, the server works at a lower rate rather than stopping completely, and only takes one vacation each time. Using the matrix analytic approach, the steady-state distributions of the number of customers in the system at both arrival and arbitrary epochs are obtained. Then the closed property of the conditional probability of gamma distribution is proved and using it the waiting time of an arbitrary customer is analyzed. Finally, Some numerical results and effect of critical model parameters on performance measures have been presented.  相似文献   

2.
We consider a GI/M/1 queueing system in which the server takes exactly one exponential vacation each time the system empties. We derive the PGF of the stationary queue length and the LST of the stationary FIFO sojourn time. We show that both the queue length and the sojourn time can be stochastically decomposed into meaningful quantities.  相似文献   

3.
In this paper, we analyze a single-server vacation queue with a general arrival process. Two policies, working vacation and vacation interruption, are connected to model some practical problems. The GI/M/1 queue with such two policies is described and by the matrix analysis method, we obtain various performance measures such as mean queue length and waiting time. Finally, using some numerical examples, we present the parameter effect on the performance measures and establish the cost and profit functions to analyze the optimal service rate η during the vacation period.  相似文献   

4.
This paper deals with a single server working vacation queueing model with multiple types of server breakdowns. In a working vacations queueing model, the server works at a different rate instead of being completely idle during the vacation period; the arrival rate varies according to the server’s status. It is assumed that the server is subject to interruption due to multiple types of breakdowns and is sent immediately for repair. Each type of breakdown requires a finite random number of stages of repair. The life time of the server and the repair time of each phase are assumed to be exponentially distributed. We propose a matrix–geometric approach for computing the stationary queue length distribution. Various performance indices namely the expected length of busy period, the expected length of working vacation period, the mean waiting time and average delay, etc. are established. In order to validate the analytical approach, by taking illustration, we compute numerical results. The sensitivity analysis is also performed to explore the effect of different parameters.  相似文献   

5.
6.
This paper treats an M/G/1 queue with single working vacation and vacation interruption under Bernoulli schedule. Whenever the system becomes empty at a service completion instant, the server goes for a single working vacation. In the working vacation, a customer is served at a lower speed, and if there are customers in the queue at the instant of a service completion, the server is resumed to a regular busy period with probability p   (i.e., the vacation is interrupted) or continues the vacation with probability 1-p1-p. Using the matrix analytic method, we obtain the distribution for the stationary queue length at departure epochs. The joint distribution for the stationary queue length and service status at the arbitrary epoch is also obtained by using supplementary variable technique. We also develop a variety of stationary performance measures for this system and give a conditional stochastic decomposition result. Finally, several numerical examples are presented.  相似文献   

7.
Lin and Ke consider the M/M/R queue with working vacation [Chuen-Horng Lin, Jau-Chuan Ke, Multi-server system with single working vacation, Appl. Math. Modell. (2008), doi:10.1016/j.apm.2008.10.006], and derive a computable explicit form for rate matrix RR of the geometric approach and the stationary probabilities of the queue. However, it contains some errors concerning the terminology, notations and the final form of rate matrix RR. This note shows that the classical Quasi-birth-death (QBD) formulation of the M/M/R queue with working vacation naturally leads to the infinitesimal generator matrix of the QBD process and the probability interpretation of matrices involving in the infinitesimal generator matrix.  相似文献   

8.
This paper studies the M/M/1 machine repair problem with working vacation in which the server works with different repair rates rather than completely terminating the repair during a vacation period. We assume that the server begins the working vacation when the system is empty. The failure times, repair times, and vacation times are all assumed to be exponentially distributed. We use the MAPLE software to compute steady-state probabilities and several system performance measures. A cost model is derived to determine the optimal values of the number of operating machines and two different repair rates simultaneously, and maintain the system availability at a certain level. We use the direct search method and Newton’s method for unconstrained optimization to repeatedly find the global minimum value until the system availability constraint is satisfied. Some numerical examples are provided to illustrate Newton’s method.  相似文献   

9.
This paper presents modeling and analysis of unreliable Markovian multiserver finite-buffer queue with discouragement and synchronous working vacation policy. According to this policy, c servers keep serving the customers until the number of idle servers reaches the threshold level d; then d idle servers take vacation altogether. Out of these d vacationing servers, dW servers may opt for working vacation i.e. they serve the secondary customers with different rates during the vacation period. On the other hand, the remaining d − dW = dV servers continue to be on vacation. During the vacation of d servers, the other e = c − d servers must be present in the system even if they are idle. On returning from vacation, if the queue size does not exceed e, then these d servers take another vacation together; otherwise start serving the customers. The servers may undergo breakdown simultaneously both in regular busy period and working vacation period due to the failure of a main control unit. This main unit is then repaired by the repairman in at most two phases. We obtain the stationary performance measures such as expected queue length, average balking and reneging rate, throughput, etc. The steady state and transient behaviours of the arriving customers and the servers are examined by using matrix analytical method and numerical approach based on Runge-Kutta method of fourth order, respectively. The sensitivity analysis is facilitated for the transient model to demonstrate the validity of the analytical results and to examine the effect of different parameters on various performance indices.  相似文献   

10.
《Applied Mathematical Modelling》2014,38(21-22):5113-5125
This paper deals with the (p, N)-policy M/G/1 queue with an unreliable server and single vacation. Immediately after all of the customers in the system are served, the server takes single vacation. As soon as N customers are accumulated in the queue, the server is activated for services with probability p or deactivated with probability (1  p). When the server returns from vacation and the system size exceeds N, the server begins serving the waiting customers. If the number of customers waiting in the queue is less than N when the server returns from vacation, he waits in the system until the system size reaches or exceeds N. It is assumed that the server is subject to break down according to a Poisson process and the repair time obeys a general distribution. This paper derived the system size distribution for the system described above at a stationary point of time. Various system characteristics were also developed. We then constructed a total expected cost function per unit time and applied the Tabu search method to find the minimum cost. Some numerical results are also given for illustrative purposes.  相似文献   

11.
推广的单重休假M~x/G/1排队系统   总被引:2,自引:0,他引:2  
研究了服务前需要重新调整机器的单重休假Mx/G/1排队系统,在LS变换和L变换下得到了服务员忙期中队长的瞬态分布和队长稳态分布的概率母函数.  相似文献   

12.
This paper considers an infinite-capacity M/M/c queueing system with modified Bernoulli vacation under a single vacation policy. At each service completion of a server, the server may go for a vacation or may continue to serve the next customer, if any in the queue. The system is analyzed as a quasi-birth-and-death (QBD) process and the necessary and sufficient condition of system equilibrium is obtained. The explicit closed-form of the rate matrix is derived and the useful formula for computing stationary probabilities is developed by using matrix analytic approach. System performance measures are explicitly developed in terms of computable forms. A cost model is derived to determine the optimal values of the number of servers, service rate and vacation rate simultaneously at the minimum total expected cost per unit time. Illustrative numerical examples demonstrate the optimization approach as well as the effect of various parameters on system performance measures.  相似文献   

13.
We consider the MAP/G/1 queue with working vacations and vacation interruption. We obtain the queue length distribution with the method of supplementary variable, combined with the matrix-analytic method and censoring technique. We also obtain the system size distribution at pre-arrival epoch and the Laplace–Stieltjes transform (LST) of waiting time.  相似文献   

14.
This paper analyzes the F-policy M/M/1/K queueing system with working vacation and an exponential startup time. The F-policy deals with the issue of controlling arrivals to a queueing system, and the server requires a startup time before allowing customers to enter the system. For the queueing systems with working vacation, the server can still provide service to customers rather than completely stop the service during a vacation period. The matrix-analytic method is applied to develop the steady-state probabilities, and then obtain several system characteristics. We construct the expected cost function and formulate an optimization problem to find the minimum cost. The direct search method and Quasi-Newton method are implemented to determine the optimal system capacity K, the optimal threshold F and the optimal service rates (μB,μV) at the minimum cost. A sensitivity analysis is conducted to investigate the effect of changes in the system parameters on the expected cost function. Finally, numerical examples are provided for illustration purpose.  相似文献   

15.
This paper analyzes a k-out-of-n:G   repairable system with one repairman who takes a single vacation, the duration of which follows a general distribution. The working time of each component is an exponentially distributed random variable and the repair time of each failed component is governed by an arbitrary distribution. Moreover, we assume that every component is “as good as new” after being repaired. Under these assumptions, several important reliability measures such as the availability, the rate of occurrence of failures, and the mean time to first failure of the system are derived by employing the supplementary variable technique and the Laplace transform. Meanwhile, their recursive expressions are obtained. Furthermore, through numerical examples, we study the influence of various parameters on the system reliability measures. Finally, the Monte Carlo simulation and two special cases of the system which are (n-1)(n-1)-out-of-n:G repairable system and 1-out-of-n:G repairable system are presented to illustrate the correctness of the analytical results.  相似文献   

16.
Consider a GI/M/1 queue with start-up period and single working vacation. When the system is in a closed state, an arriving customer leading to a start-up period, after the start-up period, the system becomes a normal service state. And during the working vacation period, if there are customers at a service completion instant, the vacation can be interrupted and the server will come back to the normal working level with probability p (0 ? p ? 1) or continue the vacation with probability 1 − p. Meanwhile, if there is no customer when a vacation ends, the system is closed. Using the matrix-analytic method, we obtain the steady-state distributions for the queue length at both arrival epochs and arbitrary epochs, the waiting time and sojourn time.  相似文献   

17.
In this paper, we study (N, L) switch-over policy for machine repair model with warm standbys and two repairmen. The repairman (R1) turns on for repair only when N-failed units are accumulated and starts repair after a set up time which is assumed to be exponentially distributed. As soon as the system becomes empty, the repairman (R1) leaves for a vacation and returns back when he finds the number of failed units in the system greater than or equal to a threshold value N. Second repairman (R2) turns on when there are L(>N) failed units in the system and goes for a vacation if there are less than L failed units. The life time and repair time of failed units are assumed to be exponentially distributed. The steady state queue size distribution is obtained by using recursive method. Expressions for the average number of failed units in the queue and the average waiting time are established.  相似文献   

18.
Discrete-time GI/Geo/1 queue with multiple working vacations   总被引:2,自引:0,他引:2  
Consider the discrete time GI/Geo/1 queue with working vacations under EAS and LAS schemes. The server takes the original work at the lower rate rather than completely stopping during the vacation period. Using the matrix-geometric solution method, we obtain the steady-state distribution of the number of customers in the system and present the stochastic decomposition property of the queue length. Furthermore, we find and verify the closed property of conditional probability for negative binomial distributions. Using such property, we obtain the specific expression for the steady-state distribution of the waiting time and explain its two conditional stochastic decomposition structures. Finally, two special models are presented.   相似文献   

19.
We study a single removable and non-reliable server in the N policy M/M/1 queueing system. The server begins service only when the number of customers in the system reaches N (N1). After each idle period, the startup times of the server follow the negative exponential distribution. While the server is working, it is subject to breakdowns according to a Poisson process. When the server breaks down, it requires repair at a repair facility, where the repair times follow the negative exponential distribution. The steady-state results are derived and it is shown that the probability that the server is busy is equal to the traffic intensity. Cost model is developed to determine the optimal operating N policy at minimum cost.  相似文献   

20.
In this paper, we study an M/G/1 multi-queueing system consisting ofM finite capacity queues, at which customers arrive according to independent Poisson processes. The customers require service times according to a queue-dependent general distribution. Each queue has a different priority. The queues are attended by a single server according to their priority and are served in a non-preemptive way. If there are no customers present, the server takes repeated vacations. The length of each vacation is a random variable with a general distribution function. We derive steady state formulas for the queue length distribution and the Laplace transform of the queueing time distribution for each queue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号