首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent surface heat flux in a living skin tissue from the temperature measurements taken within the tissue. The inverse solutions will be justified based on the numerical experiments in which three different heat flux distributions are to be determined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors upon the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent surface heat flux can be obtained for the test cases considered in this study.  相似文献   

2.
This paper proposes a sequential approach to determine the unknown parameters for inverse heat conduction problems which have multiple time-dependent heat sources. There are two main aims in this study, one is to derive an inverse algorithm that can estimate the unknown conditions effectively, and the other is to bring up a theoretical sensitivity analysis to discuss what causes the growth of errors. This paper has three major achievements with regard to the literature on IHCPs, as follows: (1) proposing an efficient sequential inverse algorithm that can simultaneously determine several unknown time-dependent parameters; (2) exploring why the sequential function specification method can provide a stable but inaccurate estimation when tackling problems with larger measurement errors; and (3) discussing the sensitivity problem and analyzing what factors cause the growth in error sensitivity. Three examples are applied to demonstrate the performance of the proposed method, and the numerical results show that the accurate estimations can be obtained by alleviating the error sensitivity when the measurement error is considered.  相似文献   

3.
In this paper we consider an inverse heat conduction problem which appears in some applied subjects. This problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. The Meyer wavelets are applied to formulate a regularized solution which is convergent to exact one on an acceptable interval when data error tends to zero.  相似文献   

4.
In this paper, a strategy to design a functional for inverse problems of hyperbolic equations is proposed. For an inverse source problem, it is shown that the designed functional is globally strictly convex. For an inverse coefficient problem, we can only prove that it is strictly convex near true solution. This strategy can be generalized to other inverse problems, as long as Lipschitz stability is given.  相似文献   

5.
A non-standard inverse heat conduction problem is considered. Data are given along the line x = 1 and the solution at x = 0 is sought. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. In order to solve the problem numerically it is necessary to employ some regularization method. In this paper, we study a modification of the equation, where a fourth-order mixed derivative term is added. Error estimates for this equation are given, which show that the solution of the modified equation is an approximation of the heat equation. A numerical implementation is considered and a simple example is given. Some numerical results show the usefulness of the modified method.  相似文献   

6.
The non-Fourier heat conduction in a finite medium subjected to a periodic heat flux is modelled using the finite integral transform technique and an analytic solution is obtained. An analogy between thermal oscillation and oscillation of mechanical and electrical systems is drawn. A transition criterion from the non-Fourier heat conduction formulation to the Fourier formulation is obtained and a simple analytical expression of the phase and amplitude of thermal oscillation is derived.  相似文献   

7.
In this paper we consider a multi-dimensional inverse heat conduction problem with time-dependent coefficients in a box, which is well-known to be severely ill-posed, by a variational method. The gradient of the functional to be minimized is obtained by the aid of an adjoint problem, and the conjugate gradient method with a stopping rule is then applied to this ill-posed optimization problem. To enhance the stability and the accuracy of the numerical solution to the problem, we apply this scheme to the discretized inverse problem rather than to the continuous one. The difficulties with large dimensions of discretized problems are overcome by a splitting method which only requires the solution of easy-to-solve one-dimensional problems. The numerical results provided by our method are very good and the techniques seem to be very promising.  相似文献   

8.
In a previous paper [1], numerical solutions to initial-boundary value problems for a semi-empirical model of heat conduction were compared with available experimental results.

In the present paper, we modify the model by introducing more realistic approximations of constitutive functions, based on measured heat conductivities and second sound speeds for NaF at low temperatures (10…20° K). We achieve good accordance between measured second sound pulses and numerical solutions in the temperature range covered by experiments, and reasonable behaviour even beyond this interval. Especially, a passage to the diffusive regime of the classical Fourier law is possible.  相似文献   


9.
Inverse problems can be found in many areas of science and engineering and can be applied in different ways. Two examples can be cited: thermal properties estimation or heat flux function estimation in some engineering thermal process. Different techniques for the solution of inverse heat conduction problem (IHCP) can be found in literature. However, any inverse or optimization technique has a basic and common characteristic: the need to solve the direct problem solution several times. This characteristic is the cause of the great computational time consumed. In heat conduction problem, the time consumed is, usually, due to the use of numerical solutions of multidimensional models with refined mesh. In this case, if analytical solutions are available the computational time can be reduced drastically. This study presents the development and application of a 3D-transient analytical solution based on Green’s function. The inverse problem is due to the thermal properties estimation of conductors. The method is based on experimental determination of thermal conductivity and diffusivity using partially heated surface method without heat flux transducer. Originally developed to use numerical solution, this technique can, using analytical solution, estimate thermal properties faster and with better accuracy.  相似文献   

10.
One-dimensional (planar, cylindrically symmetric, and spherically symmetric) nonlinear heat conduction problems with the heat flux at the origin specified in the form of a power time dependence are considered. The initial temperature of the medium is assumed to be zero. Approximate solutions to the problems are obtained. The convergence of the resulting solutions is discussed.  相似文献   

11.
We solve a half-line problem for a nonlinear diffusion equation with a given time-dependent thermal conductivity at the origin. The problem reduces to a linear Volterra integral equation, which is solvable by Picard’s process of successive approximations. We analyze some explicit examples numerically. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 152, No. 1, pp. 58–65, July, 2007.  相似文献   

12.
In this article we investigate the numerical oscillations encountered when approximating the solution to the hyperbolic heat conduction equation. We consider a benchmark problem and show that it is not well-posed, unless a jump condition is specified. The alternative is to “smooth” the jump which leads to a sharp crested wave front, but with no discontinuity. To track the wave front we split the problem into auxiliary problems and solve these using different methods. The resulting solution is oscillation-free.  相似文献   

13.
In this note, we investigate the spatial behavior of the solutions of the equation proposed to describe a theory for the heat conduction with two delay terms. We obtain an alternative of the Phragmén-Lindelöf type, which means that the solutions either decay or blow-up at infinity, both options in an exponential way. We also describe how to obtain an upper bound for the amplitude term. This is the first contribution on spatial behavior for partial differential equations involving two delay terms. We use energy arguments. The main point of the contribution is the use of an exponentially weighted energy function.  相似文献   

14.
The local well-posedness of the minimizer of an optimal control problem is studied in this paper. The optimization problem concerns an inverse problem of simultaneously reconstructing the initial temperature and heat radiative coefficient in a heat conduction equation. Being different from other ordinary optimization problems, the cost functional constructed in the paper is a binary functional which contains two independent variables and two independent regularization parameters. Particularly, since the status of the two unknown coefficients in the cost functional are different, the conjugate theory which is extensively used in single-parameter optimization problems cannot be applied for our problem. The necessary condition which must be satisfied by the minimizer is deduced. By assuming the terminal time T is relatively small, an L2 estimate regarding the minimizer is obtained, from which the uniqueness and stability of the minimizer can be deduced immediately.  相似文献   

15.
逆热传导问题是数学物理反问题中的热点和前沿课题之一,在钢铁生产等领域中具有重要的应用背景.讨论一个多层介质中的逆热传导问题,它是一个极度不适定问题.通过傅里叶截断方法构造正则化近似解,并给出相应的稳定性估计.  相似文献   

16.
We consider the Maxwell-Cattaneo system of equations for generalized heat conduction where the temperature and heat flux satisfy a nonstandard auxiliary condition which prescribes a combination of their values initially and at a later time. We obtain L2 bounds for the temperature and heat flux by means of Lagrange identities. These bounds extend the range of validity for the parameter in the nonstandard condition under a constraint on the coefficients in the differential equations.  相似文献   

17.
An efficient algorithm is proposed to solve the steady-state nonlinear heat conduction equation using the boundary element method (BEM). Nonlinearity of the heat conduction equation arises from nonlinear boundary conditions and temperature dependence of thermal conductivity. Using Kirchhoff's transformation, the case of temperature dependence of thermal conductivity can be transformed to the nonlinear boundary conditions case. Applying the BEM technique, the resulting matrix equation becomes nonlinear. The nonlinearity, however, only involves the boundary nodes that have nonlinearboundary conditions. The proposed local iterative scheme reduces the entire BEM matrix equation to a smaller matrix equation whose rank is the same as the number of boundary nodes with nonlinear boundary conditions. The Newton-Raphson iteration scheme is used to solve the reduced nonlinear matrix equation. The local iterative scheme is first applied to two one-dimensional problems (analytical solutions are possible) with different nonlinear boundary conditions. It is then applied to a two-region problem. Finally, the local iterative scheme is applied to two cavity problems in which radiation plays a role in the heat transfer.  相似文献   

18.
Wei Cheng 《Applicable analysis》2017,96(15):2505-2515
In this paper, we consider a radially symmetric inverse heat conduction problem of determining the surface heat flux distribution from a fixed location inside a cylinder. This problem is ill-posed in the Hadamard sense and a conditional stability estimate is given for it. A modified quasi-boundary value regularization method is applied to formulate a regularized solution, and a sharp error estimate between the approximate solution and the exact solution is established by choosing a suitable regularization parameter. A numerical example is presented to verify the efficiency of the regularization method.  相似文献   

19.
We first extend slowly oscillating functions to a more general setting and investigate their properties. Then we show the existence and uniqueness of slowly oscillating solutions of parabolic equations and parabolic inverse problems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号