首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient electro-osmotic flow of viscoelastic fluids in rectangular micro-channels is investigated. The general twofold series solution for the velocity distribution of electro-osmotic flow of viscoelastic fluids with generalized fractional Oldroyd-B constitutive model is obtained by using finite Fourier and Laplace transforms. Under three limiting cases, the generalized Oldroyd-B model simplifies to Newtonian model, fractional Maxwell model and generalized second grade model, where all the explicit exact solutions for velocity distribution are found through the discrete Laplace transform of the sequential fractional derivatives. These exact solutions may be able to predict the flow behavior of viscoelastic biological fluids in BioMEMS and Lab-on-a-chip devices and thus could benefit the design of these devices.  相似文献   

2.
Modified Darcy’s law for fractional generalized Burgers’ fluid in a porous medium is introduced. The flow near a wall suddenly set in motion for a fractional generalized Burgers’ fluid in a porous half-space is investigated. The velocity of the flow is described by fractional partial differential equations. By using the Fourier sine transform and the fractional Laplace transform, an exact solution of the velocity distribution is obtained. Some previous and classical results can be recovered from our results, such as the velocity solutions of the Stokes’ first problem for viscous Newtonian, second grade, Maxwell, Oldroyd-B or Burgers’ fluids.  相似文献   

3.
This paper deals with the unsteady helical flows of a generalized Oldroyd-B fluid between two infinite coaxial cylinders and within an infinite cylinder. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions are obtained with the help of integral transforms (Laplace transform, Weber transform and finite Hankel transform). The corresponding solutions for generalized second grade and Maxwell fluids as well as those for the Newtonian and ordinary Oldroyd-B fluids are also given in limiting cases. Finally, the influence of model parameters on the velocity field is also analyzed by graphical illustrations.  相似文献   

4.
This paper deals with some accelerated flows of generalized Oldroyd-B fluid between two side walls perpendicular to the plate. The fractional calculus approach is used in the constitutive relationship of the Oldroyd-B fluid. The exact analytic solution is obtained by means of mixed Fourier sine transform and discrete Laplace transform for fractional derivative.  相似文献   

5.
This paper presents an analysis for magnetohydrodynamic (MHD) flow of an incompressible generalized Oldroyd-B fluid inducing by an accelerating plate. Where the no-slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of a viscoelastic fluid. Closed form solutions for velocity and shear stress are obtained in terms of Fox H-function by using the discrete Laplace transform of the sequential fractional derivatives. The solutions for no-slip condition and no magnetic field can be derived as the special cases. Furthermore, the effects of various parameters on the corresponding flow and shear stress characteristics are analyzed and discussed in detail.  相似文献   

6.
This paper deals with the 3D flow of a generalized Oldroyd-B fluid due to a constant pressure gradient between two side walls perpendicular to a plate. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. Exact analytic solutions for the velocity and stress fields, in terms of the Fox H-function, are established by means of the finite Fourier sine transform and the Laplace transform. Solutions similar to those for ordinary Oldroyd-B fluid as well as those for Maxwell and second-grade fluids are also obtained as limiting cases of the results presented. Furthermore, 3D figures for velocity and shear stress fields are presented for the first time for certain values of the parameters, and the associated transport characteristics are analyzed and discussed.  相似文献   

7.
This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag–Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.  相似文献   

8.
This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag–Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.  相似文献   

9.
10.
This paper presents an analysis for helical flows of a heated generalized Oldroyd-B fluid subject to a time-dependent shear stress in porous medium, where the motion is due to the longitudinal time-dependent shear stress and the oscillating velocity in boundary. The exact solutions are established by using the sequential fractional derivatives Laplace transform coupled with finite Hankel transforms in terms of generalized G function. Moreover, the effects of various parameters (relaxation time, fractional parameter, permeability and porosity) on the flow and heat transfer are analyzed in detail by graphical illustrations.  相似文献   

11.
Considering a fractional derivative model the unsteady flow of an Oldroyd-B fluid between two infinite coaxial circular cylinders is studied by using finite Hankel and Laplace transforms. The motion is produced by the inner cylinder which is subject to a time dependent longitudinal shear stress at time t = 0+. The solution obtained under series form in terms of generalized G and R functions, satisfy all imposed initial and boundary conditions. The corresponding solutions for ordinary Oldroyd-B, generalized and ordinary Maxwell, and Newtonian fluids are obtained as limiting cases of our general solutions. The influence of pertinent parameters on the fluid motion as well as a comparison between models is illustrated graphically.  相似文献   

12.
This work is concerned with applying the fractional calculus approach to the fundamental Stokes’ first problem of a heated Burgers’ fluid in a porous half-space. Modified Darcy's law for a Burgers’ fluid with fractional model is introduced first time. By using the Fourier sine transform and the fractional Laplace transform, exact solutions of the velocity and temperature field are obtained. The solutions for a Navier–Stokes, second grade, Maxwell, Oldroyd-B or Burgers’ fluid appear as the limiting cases of the present analysis.  相似文献   

13.
This paper deals with the unsteady flows of a viscoelastic fluid between two infinitely long concentric circular cylinders. The fractional calculus approach in the constitutive relationship model of a Burgers’ fluid is introduced. With the help of integral transforms (the Laplace transform and the Weber transform), exact solutions are constructed for the following two problems: (i) when the outer cylinder makes a simple harmonic oscillation; and (ii) when the outer cylinder suddenly begins rotating while the inner cylinder remains stationary. Some previous and classical results can be recovered from the presented results, such as starting solutions for second grade, Maxwell, Oldroyd-B, and Burgers’ fluids.  相似文献   

14.
In this paper, we study the existence and uniqueness of solutions for time-fractional Oldroyd-B fluid equations with generalized fractional derivatives. We distinguish two cases. Firstly for the linear case, we get regularity results under some hypotheses of the source function and the initial data. Secondly for the nonlinear case, we use the Banach fixed point theorem to obtain the existence and uniqueness of solutions.  相似文献   

15.
16.
The velocity field and the shear stress corresponding to the motion of a generalized Oldroyd-B fluid due to an infinite circular cylinder subject to a longitudinal time-dependent shear stress are established by means of the Laplace and finite Hankel transforms. The exact solutions, written under series form, can be easily specialized to give the similar solutions for generalized Maxwell and generalized second grade fluids as well as for ordinary Oldroyd-B, Maxwell, second grade and Newtonian fluids performing the same motion. Finally, some characteristics of the motion as well as the influence of the material parameters on the behavior of the fluid are shown by graphical illustrations.  相似文献   

17.
This article considers the oscillatory flows of a generalized Burgers’ fluid on an infinite insulating plate when the fluid is permeated by a transverse magnetic field. The effects of Hall current are taken into account. Modified Darcy’s law for a generalized Burgers’ fluid has been used to discuss the flows in a porous medium. The governing time dependent equations in a rotating frame are first developed and then solved for the two problems. The influence of various emerging parameters is discussed through various graphs. The solutions for the Newtonian, second grade, Maxwell, Oldroyd-B and Burgers’ fluids can be obtained from our solutions as the limiting cases.  相似文献   

18.
This paper deals with the unsteady axial Couette flow of fractional second grade fluid (FSGF) and fractional Maxwell fluid (FMF) between two infinitely long concentric circular cylinders. With the help of integral transforms (Laplace transform and Weber transform), generalized Mittag–Leffler function and H-Fox function, we get the analytical solutions of the models. Then we discuss the exact solutions and find some results which have been known as special cases of our solutions. Finally, we analyze the effects of the fractional derivative on the models by using the numerical results and find that the oscillation exists in the velocity field of FMF.  相似文献   

19.
广义二阶流体涡流速度的衰减和温度扩散   总被引:2,自引:1,他引:1  
将分数阶微积分运算引入到二阶流体的本构关系中,建立了带分数阶导数的广义二阶流体模型.研究了广义二阶流体涡流速度的衰减和温度扩散,利用分数阶导数的Laplace变换和广义Mittag-Leffler函数,得到了涡流速度场和温度场的精确解,分析了分数阶指数对涡流速度的衰减和温度扩散的影响.  相似文献   

20.
This work is concerned with deriving the equation for describing the magnetohydrodynamic (MHD) flow of a fractional generalized Burgers’ fluid in a porous space. Modified Darcy's law has been taken into account. Closed form solutions for velocity are obtained in three problems. The solutions for Navier–Stokes, second grade, Maxwell, Oldroyd-B and Burgers’ fluids appear as the limiting cases of the obtained solutions. A parametric study of some physical parameters involved in the problems is performed to illustrate the influence of these parameters on the velocity profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号