首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
兼具多功能性质的材料是当今表面增强拉曼(SERS)基底构筑的发展方向。纳米模拟酶催化剂近年来发展迅速,引起了不同领域包括材料、化学、生物学、医学等学科的广泛研究兴趣。与天然酶相比,纳米酶具有高稳定性和可调催化活性以及价格低的优点,并能够避免生物酶易失活的特点,使其在催化和酶动力学领域具有广泛的应用前景,特别是在分析化学中有重要意义。构筑了一系列兼具类酶催化活性和SERS活性的纳米酶SERS基底,利用SERS及其他技术研究了类酶催化过程中分子的反应动力学过程,探讨了其类酶催化机理,并将其应用于多种有机分子及生物分子的超灵敏检测中。这里我们介绍几种多功能纳米类酶催化材料SERS基底的构筑及其应用研究:(1)石墨烯/半导体/金属复合纳米酶催化材料的构筑及其对生物体系的超灵敏检测;(2)碳点/金属复合纳米材料的构筑及其SERS增强机制与类酶催化性质研究;(3)导电高分子/金属复合材料的制备及其SERS与类酶催化性质研究;(4)金属/MOF复合材料的构筑及其SERS与类酶增强催化机理与检测研究。  相似文献   

2.
纳米酶是一类既有纳米材料的独特性能,又有催化功能的模拟酶,而表面增强拉曼散射(SERS)是由于一些分子吸附在粗糙金属纳米粒子或其他具有增强性能的纳米材料表面引起的拉曼信号被极大增强的现象,二者有一定的共性。除了贵金属、双金属纳米酶SERS基底的SERS增强来源于电磁场增强机制以外,SERS纳米酶复合材料基底的SERS增强机制一般为电磁场增强与化学增强共同起到作用。由于纳米酶是以纳米材料为基础的催化材料,而SERS基底材料也依赖于纳米材料,纳米酶SERS基底材料的构筑需要协同材料的类酶催化和SERS两个方面的活性。然而SERS活性基底材料的引入有可能会减少催化剂表面催化中心位点,降低催化效率,还会由于被催化分子在催化活性材料与SERS活性材料上的吸附性能不同造成SERS检测信号不能真实反映催化反应的真实进程,很大程度上限制了SERS技术对于催化监测的应用。因此对于纳米酶SERS基底来说,其有效的设计构筑来协同复合材料的催化与SERS活性对于纳米酶催化体系研究具有重要的意义。纳米酶SERS基底材料对于SERS技术在环境监测、食品安全、生物医学等领域应用具有重要的意义。基于特异性分子或者离子对于纳米酶催化反应的刺激响应,可以间接检测一些无拉曼散射截面的小分子,重金属离子和生物分子等,而这些分子本身是无法通过与基底的作用而直接被检测出来,对于这些分子的检测助于推进表面增强拉曼技术的普适化应用。纳米酶SERS基质材料的研究在理论和实际应用中具有重要价值,在催化机理、监测以及超敏生物传感领域具有广阔的前景。  相似文献   

3.
表面增强拉曼散射(SERS)是公认的超灵敏的光谱工具.和传统的优化SERS基底材料或构筑完美的结构策略相比,我们提出了一种极其简单和灵敏的方法,该方法被命名为状态转变增强拉曼光谱(STERS).这种STERS检测方法可广泛的应用于毒品安全检测、食品安全和环境保护等方面.如果我们把这种方法和便携式拉曼光谱仪结合,这种应用...  相似文献   

4.
近年来MnCo_2O_4材料由于其优异的催化活性和导电性在超级电容器、锂离子电池、CO_2还原燃料电池等方面被广泛应用。MnCo_2O_4表面富含氧化态的Mn~(2+)/Mn~(3+)和Co_~(2+)/Co~(3+)使其成为较好的类氧化物酶基底的电子传输介质~([1])。表面增强拉曼光谱技术是一种超灵敏的分子检测手段,类氧化物酶材料与贵金属复合,可以构筑一种氧化物酶与SERS协同增强活性的基底材料,以SERS技术来研究类氧化物酶催化分子反应的过程~([2])。这里,我们通过MnCo_2O_4与贵金属Au复合,由于MnCo_2O_4和Au纳米粒子之间的协同作用,MnCo_2O_4@Au纳米纤维复合材料比单独MnCo_2O_4和Au展现出更好的SERS活性及很好的类氧化物酶活性,进一步这种材料还可以检测有害的重金属离子。这种MnCo_2O_4@Au纳米类氧化物酶复合材料SERS基底在生物传感器、环境保护和食品安全方面具有广阔的应用前景。  相似文献   

5.
目前所应用的SERS检测技术中,绝大部分都是贵金属材料,虽然贵金属材料都具有很强的拉曼增强效果,但是对激发光源却有很强的依赖,具有较大的局限性。以单层二维有序的聚苯乙烯胶体球为模板支撑,采用共溅射的方法将一种贵金属Ag与半导体FeS成功复合到一起并具有SERS活性的Ag/FeS复合材料。经检测发现其可以作为SERS基底,拓展了SERS基底材料的检测范围,增强了待检测探针分子亚甲基蓝(MB)的拉曼信号强度,在拉曼检测中有望得到广泛的应用。  相似文献   

6.
碳点(CDs),尺寸在1~10nm,由于其独特的结构和光学性质,以及良好的生物相容性,在太阳能电池、有机污染物的降解和检测,光学染料、生物标记方面有着广泛的应用~([1])。TiO_2作为一种半导体材料,其粒子具有表面效应,量子尺寸效应,宏观量子隧道效应,催化等性质,可作为SERS基底。本文利用水热法成功制得粒径为2~6nm的发蓝光的CDs~([2]),然后在水浴下直接与TiO_2纤维和AgNO_3反应,形成在TiO_2表面包覆核壳结构的Ag@CDs纳米粒子复合物,TiO_2纤维长度和宽度不一,Ag@CDs平均尺寸在15nm左右,然后以TiO_2/Ag@CDs为SERS基底,PATP为探针分子,探究了其SERS性能,发现其检测的最低浓度可达到10~(-9) mol·L~(-1),具有良好的SERS增强能力。我们还分别研究了TiO_2/Ag@CDs的催化能力,用SERS监测了分子的变化过程,发现具有优良的催化性质,促进了CDs在SERS领域的应用。  相似文献   

7.
表面增强拉曼散射(surface-enhanced Raman scattering,简称为SERS)能够提供有机分子的指纹特征信息,且具有灵敏度高和响应时间快等优点,是一项具有发展前景的分析技术。纳米结构SERS基底是获得SERS信号的关键。本文利用简便的电沉积方法在硅片上制备大面积的金微/纳颗粒阵列。金纳米颗粒之间存在大量狭小的纳米间隙,在光激发下产生大量的SERS"热点",从而具有很高的SERS灵敏度。而且,这种金微/纳结构具有高结构稳定性和化学稳定性。该结构对浓度低至10-12 M的罗丹明6G(R6G)具有很高的SERS灵敏性,且具有很好的SERS信号均匀性。利用这种微/纳结构阵列SERS基底,实现对水中低浓度农药甲基对硫磷的成功检测。这表明我们制备的金微/纳颗粒阵列在检测环境中的毒性有机物污染物方面具有潜在的应用前景。  相似文献   

8.
金属有机框架(Metal Organic Frameworks,MOFs)是一类新型的多孔状的高结晶性材料。MOFs借助于过渡金属离子和有机配体的有序组装,以配位作用构筑起晶体结构。MOFs材料可作为纳米粒子的稳定载体用于与金属纳米粒子组合形成新型的纳米复合材料。这一新型的纳米复合材料可作为SERS基底应用于SERS光谱分析研究。我们将Ag纳米粒子封装在MIL-101(Cr)这种MOFs材料中,MOFs材料所具备的大的比表面积和多孔状的结构可使分析物分子预富集且更加接近金属银纳米粒子表面,从而有助于改善SERS光谱分析与检测性能。借助于多种表征手段与数据分析,我们对此纳米复合材料的制备条件进行了优化。以对巯基吡啶为光谱探针表征了该纳米复合材料的SERS光谱活性,计算了增强因子。在此基础上,将该纳米复合材料用于水溶液中超痕量葡萄糖的SERS光谱检测,探讨了应用SERS光谱技术对葡萄糖进行定量分析的可行性。  相似文献   

9.
光催化降解性能不仅取决于光催化剂的组成与结构,而且还依赖于光催化剂界面上分子的转变机制。最近我们构建了一分层结构的Au/TiO_2/CoFe_2O_4复合材料,该材料既可作为高效光催化剂用于光降解4-氯苯酚(4-CP),又可作为SERS基底用于4-CP的SERS检测,同时兼具磁性利于回收循环使用。该多功能基底材料可以实现实时精确地原位SERS监测污染物分子在催化剂表面发生的光催化分子转化的详细信息,为准确识别反应中间体和深入了解光催化降解过程中的复杂反应机制提供了参考。  相似文献   

10.
本文提出了一种新型的基于银修饰的氨基改性粉末多孔材料的表面增强拉曼光谱(SERS)检测方法,以乐果为探针分子,分析了银溶胶的量和反应时间对基底SERS活性的影响。乐果和水胺硫磷在以银溶胶为基底时,分别只能检测到100mg/L和7mg/L,而以银修饰的氨基改性粉末多孔材料为基底时,乐果和水胺硫磷的最低检测浓度分别达到0.5mg/L和0.14mg/L,说明该基底具有很好的增强效果。此外,检测低浓度下乐果和水胺硫磷的混合农药溶液,各农药的特征峰在谱图中仍然能清晰可辨。根据实验结果可以推测,银修饰的氨基改性粉末多孔材料作为SERS基底,可以有效地应用于有机磷农药残留的检测。  相似文献   

11.
表面增强拉曼散射(surface enhanced Raman spectroscopy, SERS)作为一种超灵敏的无标签分析技术,在分子检测领域得到了广泛的研究及发展,而增强机理的探究及灵敏度、均匀性、稳定性等性能的提升一直是研究人员面临的重要挑战.本文通过梳理SERS机理的国内外研究进展,综述了单一金属基底、二硫化钼(MoS_2)基底及金属/MoS2复合基底的机理及研究现状和存在的问题等;总结介绍了二硫化钼基底及金属/二硫化钼复合基底制备方法的优缺点;概述了二硫化钼及其金属复合基底在食品检测、生物医学、环境污染监测等方面的应用研究进展;最后提出了SERS技术目前存在的不足并对其发展前景进行了展望.  相似文献   

12.
本文介绍了一种基于金纳米棒自组装结构的SERS基底构筑方法。通过工艺参数可调控的溶剂蒸发诱导组装机制,可以减少或去除溶胶成膜基底中出现的咖啡环效应,得到致密均一的薄膜型SERS基底。该基底用于毒品SERS检测具有较高的灵敏性和较好的重现性,将其与便携式拉曼光谱仪和含毒品尿液的快速前处理方法相结合,可以用于涉毒人员尿液中毒品的检测分析,因此有望应用于涉毒现场的快速检测。  相似文献   

13.
多种农药,包括孔雀石绿(MG)作为禁用兽药,存在食用致癌的风险。由于MG低廉的价格和极好的药效,在渔业养殖中一直被不法商贩非法使用,使得鱼类生鲜中时有MG残留检出。针对MG分子痕量残留的检测,目前一般是抽取少量养殖水样,再利用高效液相色谱柱、液相色谱-光谱等方法来评估其是否超标。这类传统的检测方法一般需要依赖价格昂贵的大型设备,且检测过程操作繁琐复杂,单次检测耗时长、价格高,因而与农贸市场中商品流通量大、速度快、价格需亲民低廉等特点和要求不相符合。近年来,表面增强拉曼散射(SERS)检测技术以及便携式拉曼光谱仪的出现,有望实现对痕量农药分子的现场快速检测,进而很好地解决这一问题。SERS检测技术利用金属纳米结构的表面等离激元效应感应位于其结构表面附近的分子,得到分子种类和浓度信息。为了降低可检测的浓度极限,一般会在SERS基底上利用咖啡环效应或其他手段将待测分子蒸发富集,以获得足够高的信号强度。针对亲水基底,液滴与基底相接触后,会在基底表面摊开,使其分布面积扩大,导致其咖啡环周长变长,分子分布浓度随之降低。而当采用疏水基底富集时,由于常规的疏水基底表面黏附性小,液滴在其表面处于随处滚动无法抓取的状态,极大增加了操作的难度。以MG分子痕量残留的检测为例,由于农贸市场人员众多、无专业实验平台,磕碰撞击时有发生,在此环境下采用疏水SERS基底对农药分子进行检测显然是不可取的。该研究提出一种基于超疏水高黏附纳米森林结构的SERS基底用于痕量MG分子的快速现场检测。相比于超疏水SERS基底,所提出的超疏水高黏附基底利用其高黏附性可牢固抓取待测液滴,解决了以往超疏水基底在实际现场检测中存在液滴滚动无法操作的问题。此外,与亲水基底相比,超疏水高黏附基底由于接触角大,可将咖啡环面积缩小5.73倍,继而使分子的富集浓度提高5.73倍,最终使检测极限浓度降低了至少两个数量级。研究所提出的超疏水高黏附SERS基底有望在痕量农药分子快速现场检测中得到应用。  相似文献   

14.
具有3D结构的贵金属材料是具有超灵敏检测限的SERS活性基底,具有间隙位点的结构显示出很高的SERS增强,能够吸附更多的探针分子~([1]),这在生物检测~([2])和食品检测中都具有重要应用。大部分具有3D结构贵金属材料的合成需要表面活性剂或导向剂,这可能会引入非均相杂质,电沉积方法不需要表面活性剂或模板,可简单快速地制备SERS活性基底。本工作通过电沉积方法,在柔性基底PET膜上简单快速地合成花状金微结构作为SERS传感器,对罗丹明的检测限可达10~(-11) mol·L~(-1),对福美双的检测限可达0.1ppm。  相似文献   

15.
半导体表面增强拉曼散射(SERS)材料由于其低成本、高化学稳定性、生物相容性、结构多样性和可控性而备受关注。它们被认为是在实际应用中替代贵金属SERS基板的良好候选者。然而,半导体SERS基底的实际应用受到其低灵敏度和发展滞后的极大阻碍。最近我们研究小组提出了一种利用稀土元素镱(Yb)掺杂制备半导体TiO2基底材料,这种方法可以实现对二氧化钛的几何和电子结构调制,并且获得了对4-巯基苯甲酸(4-MBA)分子极大的SERS增强。相较于未掺杂的TiO2, Yb-TiO2表现出更加优良的SERS增强效果,根据Lombardi等提出的半导体SERS增强理论,增强是通过PICT机制中的Herzberg-Teller耦合,取决于吸附分子和基底能级匹配的程度。  相似文献   

16.
表面增强拉曼散射(SERS)是一种超灵敏、高选择性的分析方法,越来越受到人们的关注。对巯基苯胺(PATP)由于其易吸附在大多数SERS基底表面,并可以产生极强的SERS信号,因此常被用作SERS的探针分子。二氧化钛(TiO_2)是一种目前常用的光催化剂,但是其催化效率仍有待提高。将贵金属与TiO_2复合是提高其催化效率的有效手段。本文采用电化学阳极氧化法制备了二氧化钛纳米管(TiO_2NTs),并采用光化学还原方法在表面沉积了贵金属银,制备了一种同时具有SERS和催化性能的双功能基底,即银纳米粒子修饰的二氧化钛纳米管(Ag/TiO_2NTs),研究了PATP分子在该基底上的光催化过程,并与在银镜基底上的光催化过程进行了比较。我们发现,Ag/TiO_2NTs基底上的PATP在催化过程中峰强度逐渐减弱,但没有新峰的出现;而在银镜基底上PATP的峰强度随光照时间却几乎没有变化,证明了PATP分子在Ag/TiO_2 NTs上的光催化降解过程。本文还对Ag/TiO_2NTs上PATP的催化过程进行了动力学分析,结果表明PATP在该基底表面的催化反应为一级反应。  相似文献   

17.
表面增强拉曼(SERS)是一种快速灵敏的表面分析检测技术。提出了一种简便快捷的制备高活性的透明柔性SERS基底,使用乙醇诱导Au NPs从水溶液中组装到水/油界面的形成致密的Au MLF后再用透明胶带转移即制备完成了SERS基底。UV-Vis和SEM测试结果显示纳米金被紧密的吸附在透明胶带上。通过调控Au溶胶的浓度以及加入乙醇与Au溶胶的体积比来控制Au纳米粒子在胶带的密度,发现加入的氯金酸体积0.4mL,乙醇与Au溶胶体积比10∶4时,制备完成的Au/Tape基底具有最佳的活性,以孔雀石绿分子为拉曼探针计算了Au/Tape基底的增强因子EF为1.8×107。此基底在非平整表面现场超灵敏快速检测具有潜力。  相似文献   

18.
表面增强拉曼散射(SERS)技术具有高灵敏度、高分辨率、无损检测及不需要预处理等优点,已成为一种可以实现定性定量分子检测的有力工具,使目标分析物信号放大的痕量检测技术,甚至能够在分子水平上提供丰富的结构信息。虽然SERS增强机理一直存在争议,但目前被广泛接受的增强机理包括物理增强(电磁场增强)和化学增强(主要为电荷转移的贡献)。随着近年来金属、非金属等诸多材料应用于SERS领域,诸多学者对于影响SERS基底的增强因素产生广泛兴趣,对于SERS增强机理的研究具有重要意义。综述中主要从SERS电磁增强机理、化学增强机理及两者的协同机理三个方面对SERS增强机理进行阐述,分析哪些因素影响基底增强效应,为SERS增强机理的分析提供一些参考。同时提出不同基底结构在增强机理分析过程中面临的问题:(1)在电磁增强机理中,单一贵金属基底因其“热点”分布不均匀、不可控因素导致SERS灵敏度和重复性差等因素,对SERS电磁增强机理影响效果较大;(2)在化学增强机理中,单一半导体材料由于价格实惠、材料性能较稳定、表面易于改性等优点被广泛应用于SERS基底、由于增强能力较低等因素、对SERS化学增强效果不明显...  相似文献   

19.
表面增强拉曼光谱(surface-enhanced Raman scattering,SERS)能够有效解决常规拉曼中信号极弱问题,在低浓度分析物的痕量检测甚至单分子的检测中具有重要的应用前景,是化学、生物、环境等领域重要的分析手段。在SERS中,高性能SERS基底的实现是关键。本文以微球自组装技术为基础,制备了一种大面积、廉价、高效的SERS基底并对其进行了形貌表征和拉曼增强光谱研究。通过开展R6G分子的SERS研究发现,此种SERS基底对R6G拉曼散射信号的增强倍数是一般粗糙基底的五倍以上。结合数值模拟分析和系统的实验研究,得到了微球直径、纳米颗粒的高度等参数对基底表面附近局域热点和SERS增强倍数的影响规律,给出了最优化的SERS基底参数。本文工作可为SERS研究提供高性能的SERS基底。  相似文献   

20.
随着SERS技术的迅猛发展以及科研人员的不断探索,我们已经发现了很多半导体材料都具有较好的SERS活性。为了进一步探讨金属-半导体体系的电荷转移过程并扩展半导体材料在SERS领域的应用,本研究小组制备了具有不同结构的贵金属Ag-半导体Cu_2S复合基底,并在吸附探针分子后对基底的SERS表现进行了分析。这种方法通过控制基底中不同成分的组成,实现对SPR的调控,该方法不仅显著提高了被检测探针分子的信号强度,还克服了长久以来基底对于激发光波长依赖的特性,可以实现多种激发波长下的拉曼增强,有望广泛应用于拉曼分析检测中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号