首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The site-dependent variations in trabecular bone morphology were studied in the rat tibia by magnitude and phase difference three-dimensional nuclear magnetic resonance microscopy and image processing, and the implications of ovariectomy were evaluated. Specimens excised from the proximal tibial metaphysis in ovariectomized (n = 7) and intact control (n = 4) rats were imaged at 9.4T with their anatomic axes parallel to the direction of the magnetic field. An echo-offset 3D rapid spin-echo excitation pulse sequence was used to generate phase difference maps, from which the standard deviation of the phase difference, sigma(delta psi), was calculated. In addition, a fictitious rate constant, R2', was calculated from the slope of the exponential portion of the Fourier transform of the phase difference histogram. Trabecular bone volume fraction was also determined in the same volume of interest. The results show strong correlations between bone volume fraction and both sigma(delta psi) and R2', suggesting that these parameters could be useful for nondestructive assessment of trabecular bone volume.  相似文献   

2.
Trabecular bone structure and bone density contribute to the strength of bone and are important in the study of osteoporosis. Wavelets are a powerful tool in characterizing and quantifying texture in an image. The purpose of this study was to validate wavelets as a tool in computing trabecular bone thickness directly from gray-level images. To this end, eight cylindrical cores of vertebral trabecular bone were imaged using 3-T magnetic resonance imaging (MRI) and micro-computed tomography (microCT). Thickness measurements of the trabecular bone from the wavelet-based analysis were compared with standard 2D structural parameters analogous to bone histomorphometry (MR images) and direct 3D distance transformation methods (microCT images). Additionally, bone volume fraction was determined using each method. The average difference in trabecular thickness between the wavelet and standard methods was less than the size of 1 pixel size for both MRI and microCT analysis. A correlation (R) of .94 for microCT measurements and that of .52 for MRI were found for the bone volume fraction. Based on these results, we conclude that wavelet-based methods deliver results comparable with those from established MR histomorphometric measurements. Because the wavelet transform is more robust with respect to image noise and operates directly on gray-level images, it could be a powerful tool for computing structural bone parameters from MR images acquired using high resolution and thus limited signal scenarios.  相似文献   

3.
Measurement of key parameters of the microstructure of trabecular bone is critical to the study of osteoporosis and bone strength. Density based methods cannot provide this information, and give only the total amount of bone present, and not its arrangement. Magnetic resonance imaging has shown the potential to provide information related to the microarchitecture of the trabecular bone matrix. Twelve samples (8 x 8 x 8 mm3 bone cubes) were cut from sheep vertebrae such that the trabeculae ran either parallel or perpendicular to each face. Detailed measurements of the structure of these bone cubes were made by histomorphometry, and compared to R'2 and R*2 measured with a spin and gradient-echo sequence, Partially Refocused Interleaved Multiple Echo, at 1.5 Tesla. The precision of the R'2 measurement (% coefficient of variation) was 8.7+/-5.1, and 7.7+/-4.3 for R*2. Uncorrected values of R'2 and R*2 were significantly correlated to density measured by quantitative computed tomography (r = 0.87, p = 0.0005, and r = 0.90, p = 0.0002, respectively), and trabecular bone area measured by histomorphometry (r = 0.80, p = 0.002, and r = 0.83, p = 0.0008, respectively). Density correction was effected by imaging the same slice of bone in two orientations (90 degrees and 0 degrees ) to the main magnetic field. For both R'2 and R*2 there was a significant difference between measurements in the 90 degrees and 0 degrees orientations (p < 0.01). The difference between the two values was used, and termed R'2net or R*2net. The net parameters were independent of bone mass. R'2net and R*2net were significantly correlated to trabecular separation (p < 0.05) with r = -0.58 and r = -0.62, respectively. These results demonstrate the ability of magnetic resonance imaging to characterize a key measure of the trabecular microstucture. An increase in trabecular separation has important biomechanical consequences in osteoporosis. This result also strengthens the hypothesis that the sensitivity of R'2 to osteoporosis-related bone changes is due to magnetic susceptibility effects in which rapid transitions between bone and marrow create local magnetic field inhomogeneities that result in an increase in R'2 values.  相似文献   

4.
We investigate the use of intermolecular multiple-quantum coherence to probe structural anisotropy in trabecular bone. Despite the low volume fraction of bone, the bone-water interface produces internal magnetic field gradients which modulate the dipolar field, depending on sample orientation, choice of dipolar correlation length, correlation gradient direction, and evolution time. For this system, the probing of internal magnetic field gradients in the liquid phase permits indirect measurements of the solid phase dipolar field. Our results suggest that measurements of volume-averaged signal intensity as a function of gradient strength and three orthogonal directions could be used to non-invasively measure the orientation of structures inside a sample or their degree of anisotropy. The system is modeled as having two phases, solid and liquid (bone and water), which differ in their magnetization density and magnetic susceptibility. A simple calculation using a priori knowledge of the material geometry and distribution of internal magnetic fields verifies the experimental measurements as a function of gradient strength, direction, and sample orientation.  相似文献   

5.
The purpose of this work was to apply fuzzy logic image processing techniques to characterize the trabecular bone structure with high-resolution magnetic resonance images. Fifteen ex vivo high-resolution magnetic resonance images of specimens of human radii at 1.5 T and 12 in vivo high-resolution magnetic resonance images of the calcanei of peri- and postmenopausal women at 3 T were obtained. Soft segmentation using fuzzy clustering was applied to MR data to obtain fuzzy bone volume fraction maps, which were then analyzed with three-dimensional (3D) fuzzy geometrical parameters and measures of fuzziness. Geometrical parameters included fuzzy perimeter and fuzzy compactness, while measures of fuzziness included linear index of fuzziness, quadratic index of fuzziness, logarithmic fuzzy entropy, and exponential fuzzy entropy. Fuzzy parameters were validated at 1.5 T with 3D structural parameters computed from microcomputed tomography images, which allow the observation of true trabecular bone structure and with apparent MR structural indexes at 1.5 T and 3 T. The validation was statistically performed with the Pearson correlation coefficient as well as with the Bland-Altman method. Bone volume fraction correlation values (r) were up to .99 (P<.001) with good agreements based on Bland-Altman analysis showing that fuzzy clustering is a valid technique to quantify this parameter. Measures of fuzziness also showed consistent correlations to trabecular number parameters (r>.85; P<.001) and good agreements based on Bland-Altman analysis, suggesting that the level of fuzziness in high-resolution magnetic resonance images could be related to the trabecular bone structure.  相似文献   

6.
The present study investigated the correlations of the group velocity, the phase velocity, and the velocity dispersion with the apparent bone density in bovine trabecular bone in vitro. The phase velocity exhibited the negative dispersion, consistent with the behavior in human trabecular bone. The group and the phase velocities were found to increase with increasing apparent bone density, respectively, exhibiting similar high correlations of r=0.94 and 0.96. The negative dispersion rate exhibited a decreasing dependence on the apparent bone density, with a significant correlation of r=-0.86.  相似文献   

7.
The study of trabecular structures is important for understanding the mechanism of alcohol related to bone changes. Alcohol consumption can compromise the body mineral composition, affecting the bone metabolism and compromising the skeleton. The effects of the ethanol treatment on the internal microarchitecture of bone samples through 3D microcomputed tomography are shown in this study. The data was acquired from a radiographic system with a micro focus X-ray conic beam and it was used the Feldkamp's technique was used to carry out the 3D reconstructions. The measured microstructure parameters, which were based on stereological concepts, were bone volume fraction, relationship between bone surface and volume, trabecular number, separation and thickness. The results show that this technique is able to analyze these kinds of structures, especially rat bone, as these structures in rats (trabecular diameter) are thinner than in human bones.  相似文献   

8.
Magnetic resonance imaging (MRI) has been used to analyze trabecular bone architecture in femur heads taken from adult Wistar rats. The aim of this study was to validate the use of MRI in assessing trabecular structure and morphology by comparing standard measures of bone morphology in the rat femur obtained from high resolution MRI with those obtained by conventional optical microscopy and by scanning electron microscopy (SEM). MR images were obtained on a Bruker 4.7 T micro-imaging system using a three-dimensional spin echo sequence with spatial resolution of 23 microm in-plane and a slice thickness of 39 microm. Optical images were obtained by de-calcifying the bone in EDTA and then sectioning 5-microm-thick slices. SEM images were obtained from bone embedded in epoxy resin with surface preparation by diamond polishing. Values of standard bone morphological parameters were compared and correlation coefficients between the MRI and the optical- and SEM-derived measures of morphology were calculated. Partial volume effects in MRI were minimized in this study by the use of very thin slices, yielding better agreement with optical- and SEM-derived measures of trabecular bone morphology than have been obtained in previous studies. Correlations between the MRI and optical data were significantly lower than those between the MRI and SEM data. Effects of de-calcification were also investigated. The results indicate that comparison of MRI with thin (de-calcified) optical images may be inherently flawed due to the destructive de-calcification and sectioning process used to prepare samples for the optical imaging.  相似文献   

9.
The effects of bone on marrow relaxation in the trabecular volume of the most proximal 3 cm in the left tibia were studied with a RF-spoiled gradient echo MRI protocol on a 1.0 T MR unit. The MR measurements were performed on six healthy volunteers, and repeated within one month in order to assess the precision of the method. In the same subjects, the area bone mineral density (bmd, g/cm2) was measured at the left proximal femur using dual-energy X-ray absorptiometry. The calcaneus of the same side was examined with quantitative ultrasound. The marrow T21 relaxation deviated from a mono-exponential decay, and resembled the decay of subcutaneous fat. The shape of the relaxation curve reflected the presence of several spectral components in bone marrow, and was further influenced by the amount and structure of the surrounding trabecular bone. The bone marrow decays showed substantially reduced inter-subject variability after normalisation of the marrow data fit parameters to corresponding values for s.c. fat. This suggests the use of an internal adipose tissue reference in order to correct for diet-related variations of marrow T21 estimates. The mean relative precision of the MR measurements was between 5% and 10% depending on the data fit model. Moderate-to-strong correlations between DXA bmd indices in the proximal femur and MR parameters were found (rmax = −0.96; p < 0.01), while ultrasound-derived measures of bone strength measured on the calcaneus demonstrated significantly weaker correlations to the MR parameters (rmax = −0.78; p > 0.05). The method employed in this study showed reasonable precision and a moderate to good correlation compared to other bone parameters derived at the same extremity, and is a promising tool for the use on patients.  相似文献   

10.
The aim of this study was to assess the potential of projection reconstruction (PR) NMR microscopy in the quantitative evaluation of trabecular bone architecture. Short-TE PR spin-echo microimages were acquired at 7.05 T on normal bone explants. The main structural parameters such as bone volume fraction (BVF), trabecular thickness (Tb.Th.) and trabecular separation (Tb.Sp.) were obtained from the 3D microimages using the method of directed secants. Quantitative structural data were then compared with those derived from conventional spin-echo microimages. Our study indicates that projection reconstruction NMR microscopy promises to be more accurate than the conventional FTI method in the analysis of trabecular bone.  相似文献   

11.
To assess the reproducibility of quantitative measurements of cartilage morphology and trabecular bone structure of the knee at 7 T, high-resolution sagittal spoiled gradient-echo images and high-resolution axial fully refocused steady-state free-precession (SSFP) images from six healthy volunteers were acquired with a 7-T scanner. The subjects were repositioned between repeated scans to test the reproducibility of the measurements. The reproducibility of each measurement was evaluated using the coefficient(s) of variation (CV). The computed CV were 1.13% and 1.55% for cartilage thickness and cartilage volume, respectively, and were 2.86%, 1.07%, 2.27% and 3.30% for apparent bone volume over total volume fraction (app.BV/TV), apparent trabecular number (app.Tb.N), apparent trabecular separation (app.Tb.Sp) and apparent trabecular thickness (app.Tb.Th), respectively. The results demonstrate that quantitative assessment of cartilage morphology and trabecular bone structure is reproducible at 7 T and motivates future musculoskeletal applications seeking the high-field strength's superior signal-to-noise ratio.  相似文献   

12.
A new method using magnetic resonance phase images for the assessment of trabecular bone structure has recently been proposed. To test this method, a mathematical model is developed which calculates the phase distribution in gradient echo acquired phase images of a structure of Pyrex glass rods immersed in a copper sulfate solution. Several experiments were performed using a phantom built in the same way as the structure used in the mathematical model. The results from the model are compared with those from the phantom tests, and the influence of resolution and bone area fraction on the phase dispersion is studied. The good correlation between theoretical and experimental results shows that phase variance increases with increasing resolution and bone density. However, the dependence of variance on bone density is less prominent for large pixel sizes.  相似文献   

13.
Frequency-dependent phase velocity was measured in trabecular-bone-mimicking phantoms consisting of two-dimensional arrays of parallel nylon wires (simulating trabeculae) with thicknesses ranging from 152 to 305 microm and spacings ranging from 700 to 1000 microm. Phase velocity varied approximately linearly with frequency over the range from 400 to 750 kHz. Dispersion was characterized by the slope of a linear least-squares regression fit to phase velocity versus frequency data. The increase in phase velocity (compared with that in water) at 500 kHz was approximately proportional to the (1) square of trabecular thickness, (2) inverse square of trabecular spacing, and (3) volume fraction occupied by nylon wires. The first derivative of phase velocity with respect to frequency was negative and exhibited nonlinear, monotonically decreasing dependencies on trabecular thickness and volume fraction. The dependencies of phase velocity and its first derivative on volume fraction in the phantoms were consistent with those reported in trabecular bone.  相似文献   

14.
Ultrasound parameters (attenuation, phase velocity, and backscatter), bone mineral density (BMD), and microarchitectural features were measured on 29 human cancellous calcaneus samples in vitro. Regression analysis was performed to predict ultrasound parameters from BMD and microarchitectural features. The best univariate predictors of the ultrasound parameters were the indexes of bone quantity: BMD and bone volume fraction (BV/TV). The most predictive univariate models for attenuation, phase velocity, and backscatter coefficient yielded adjusted squared correlation coefficients of 0.69-0.73. Multiple regression models yielded adjusted correlation coefficients of 0.74-0.83. Therefore attenuation, phase velocity, and backscatter are primarily determined by bone quantity, but multiple regression models based on bone quantity plus microarchitectural features achieve slightly better predictive performance than models based on bone quantity alone.  相似文献   

15.
An experimental model which can simulate physical changes that occur during aging was developed in order to evaluate the effects of change of mineral content and microstructure on ultrasonic properties of bovine cancellous bone. Timed immersion in hydrochloric acid was used to selectively alter the mineral content. Scanning electron microscopy and histological staining of the acid-treated trabeculae demonstrated a heterogeneous structure consisting of a mineralized core and a demineralized layer. The presence of organic matrix contributed very little to normalized broadband ultrasound attenuation (nBUA) and speed of sound. All three ultrasonic parameters, speed of sound, nBUA and backscatter coefficient, were sensitive to changes in apparent density of bovine cancellous bone. A two-component model utilizing a combination of two autocorrelation functions (a densely populated model and a spherical distribution) was used to approximate the backscatter coefficient. The predicted attenuation due to scattering constituted a significant part of the measured total attenuation (due to both scattering and absorption mechanisms) for bovine cancellous bone. Linear regression, performed between trabecular thickness values and estimated from the model correlation lengths, showed significant linear correlation, with R(2)=0.81 before and R(2)=0.80 after demineralization. The accuracy of estimation was found to increase with trabecular thickness.  相似文献   

16.
A weak scattering model was proposed for the ultrasonic frequency-dependent backscatter in dense bovine cancellous bone, using two autocorrelation functions to describe the medium: one with discrete homogeneities (spherical distribution of equal spheres) and another, which considers tissue as an inhomogeneous continuum (densely populated medium). The inverse problem to estimate trabecular thickness of bone tissue has been addressed. A combination of the two autocorrelation functions was required to closely approximate the backscatter from bovine bone with various microarchitecture, given that the shape of trabeculae ranges from a rodlike to a platelike shape. Because of the large variation in trabecular thickness, both at an intraspecimen and an interspecimen level, thickness distributions for individual trabeculae for each bone specimen were obtained, and dominant trabecular sizes were determined. Comparison of backscatter measurements to theoretical predictions indicated that there were more than one dominant trabecular sizes that scatter sound for most specimens. Linear regression, performed between dominant trabecular thickness and estimated correlation length, showed significant linear correlation (R(2)=0.81). Attenuation due to scattering by a continuous distribution of scatterers was predicted to be linear over a frequency range from 0.3 to 0.9 MHz, suggesting a possibility that scattering may be a significant source of attenuation.  相似文献   

17.
Boyi Li 《中国物理 B》2022,31(11):114303-114303
The ultrasonic backscatter (UB) has the advantage of non-invasively obtaining bone density and structure, expected to be an assessment tool for early diagnosis osteoporosis. All former UB measurements were based on exciting a short single-pulse and analyzing the ultrasonic signals backscattered in bone. This study aims to examine amplitude modulation (AM) ultrasonic excitation with UB measurements for predicting bone characteristics. The AM multiple lengths excitation and backscatter measurement (AM-UB) functions were integrated into a portable ultrasonic instrument for bone characterization. The apparent integrated backscatter coefficient in the AM excitation (AIBAM) was evaluated on the AM-UB instrumentation. The correlation coefficients of the AIBAM estimating volume fraction (BV/TV), structure model index (SMI), and bone mineral density (BMD) were then analyzed. Significant correlations (|R| = 0.82-0.93, p < 0.05) were observed between the AIBAM, BV/TV, SMI, and BMD. By growing the AM excitation length, the AIBAM values exhibit more stability both in 1.0-MHz and 3.5-MHz measurements. The recommendations in AM-UB measurement were that the avoided length (T1) should be lower than AM excitation length, and the analysis length (T2) should be enough long but not more than AM excitation length. The authors conducted an AM-UB measurement for cancellous bone characterization. Increasing the AM excitation length could substantially enhance AIBAM values stability with varying analyzed signals. The study suggests the portable AM-UB instrument with the integration of real-time analytics software that might provide a potential tool for osteoporosis early screening.  相似文献   

18.
In this work an interleaved multiple-gradient-echo chemical shift imaging (IMGE-CSI) technique was designed, implemented and evaluated at 1.5 and 4T for high-resolution lipid quantification and R(2)* measurement in-vivo. The method is analogous to echo planar CSI but utilizes conventional gradient echoes, exploiting the principle of spectroscopic bandwidth extension by interleaving temporally offset gradient-echo trains. It is shown that IMGE-CSI is able to measure true fat volume fraction in oil/water mixtures with high accuracy, not possible with Dixon-type methods which approximate the spectrum as consisting of only two spectral components. Correlation of the CSI- derived volume fractions with volumetry afforded r(2) > 0.99 with a slope of 0.98. The method is shown to be able to quantify regional variations in bone marrow composition in vivo with a spatial resolution of 2.5 x 2.5 x 5 mm(3.) R(2)* was obtained by multi-line spectral curve fitting. For the measurement of R(2)* in cancellous bone marrow the method is shown to agree well with time-domain fitting techniques but is superior in instances where the marrow has both hematopoietic and fatty constituents. Finally, excellent inter-scan reproducibility (1% coefficient of variation for global means and medians) was achieved, yielding r(2) = 0.98 of the test-retest correlation for three scans in four test subjects. In conclusion, IMGE-CSI is found to enable highly accurate lipid quantification and measurement of cancellous bone marrow R(2)* at spatial resolutions and scan times typical of standard clinical protocols.  相似文献   

19.
This paper describes preliminary observations of ultrasonic wave propagation in air-saturated defatted cancellous bone from the human vertebra. Using a broadband pulse transmission system, attenuation and phase velocity were measured over a wide frequency range (100 kHz-1 MHz). The observed behaviour was consistent with that expected for the decoupled slow wave predicted by Biot's theory. Velocity was lower than that of free air, and there was marked frequency-dependent attenuation and velocity dispersion. The tortuosity (alpha) of the trabecular microstructure was estimated from the high frequency limit of the dispersion curve, with a mean value of alpha = 1.040 +/- 0.004 obtained in five specimens. Ultrasonic measurements in air represent a valuable new approach, capable of yielding parameters that directly characterise bone structure. Furthermore, they may give useful insights into wave propagation in bone in vivo, where the trabecular framework is saturated with marrow fat rather than air.  相似文献   

20.
Padilla F  Bossy E  Haiat G  Jenson F  Laugier P 《Ultrasonics》2006,44(Z1):e239-e243
Numerical simulation of wave propagation is performed through 31 3D volumes of trabecular bone. These volumes were reconstructed from high synchrotron microtomography experiments and are used as the input geometry in a simulation software developed in our laboratory. The simulation algorithm accounts for propagation into both the saturating fluid and bone but absorption is not taken into account. We show that 3D simulation predicts phenomena observed experimentally in trabecular bones : linear frequency dependence of attenuation, increase of attenuation and speed of sound with the bone volume fraction, negative phase velocity dispersion in most of the specimens, propagation of fast and slow wave depending on the orientation of the trabecular network compared to the direction of propagation of the ultrasound. Moreover, the predicted attenuation is in very close agreement with the experimental one measured on the same specimens. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号