首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclopentadienylcobalt(I) compounds C5H5Co(PMe3)P(OR)3 (R = Me, Et, Pri) and C5H5Co(C2H4)L (L = PMe3, P(OMe)3, CO) are prepared by ligand substitution starting from C5H5Co(PMe3)2 and C5H5Co(C2H4)2. Whereas the reaction of C5H5Co(PMe3)P(OMe)3 with CH2Br2 mainly gives [C5H5CoBr(PMe3)P(OMe)3]Br, the dihalogenocobalt(III) complexes C5H5CoX2(PMe3) (X = Br, I) are obtained from C5H5Co(CO)PMe3 and CH2X2. Treatment of C5H5Co(CO)PMe3 or C5H5Co(C2H4)PMe3 with CH2ClI at low temperatures produces a mixture of C5H5CoCH2Cl(PMe3)I and C5H5CoCl(PMe3)I, which can be separated due to their different solubilities. The same reaction in the presence of ligand L gives the carbenoidcobalt(III) compounds [C5H5CoCH2Cl(PMe3)L]PF6 in nearly quantitative yields. If NEt3 is used as the Lewis base, the ylide complexes [C5H5Co(CH2PMe3)(PMe3)X]PF6 (X = Br, I) are obtained. The PF6 salts of the dications [C5H5Co(CH2PMe3)(PMe3)L]2+ (L = PMe3, P(OMe)3, CNMe) and [C5H5Co(CH2PMe3)(P(OMe)3)2]2+ are prepared either from [C5H5Co(CH2PMe3)(PMe3)X]+ and L, or more directly from C5H5Co(CO)PMe3, CH2X2 and PMe3 or P(OMe)3, respectively. The synthesis of C5H5CoCH2OMe(PMe3)I is also described.  相似文献   

2.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes. VIII. Dinuclear Cobalt Complexes with the Dianion of Bis(cyclopentadienyl)methane and Bis(tetramethylcyclopentadienyl)dimethylsilane as Bridging Ligands The dinuclear cobalt complex [CH2(C5H4)2][Co(CO)2]2 ( 4 ) which is obtained from [Co(CO)4I] ( 2 ) and Li2[CH2(C5H4)2] ( 3 ) in 75% yield reacts with PMe3, PiPr3, P2Me4, Me2PCH2CH2PMe2 and (EtO)2POP(OEt)2, to the compounds 5–9 substituting one CO ligand per cobalt atom. Oxidative addition of CH3I to [CH2(C5H4)2][Co(CO)(PMe3)]2 ( 5 ) leads to the formation of the dinuclear cobalt(III) complex [CH2(C5H4)2][Co(COCH3)(PMe3)I]2 ( 11 ). The reaction of 4 with iodide generates [CH2(C5H4)2][Co(CO)I2]2 ( 12 ) which with PMe3, P(OMe)3, P(OiPr)3, and CNMe reacts under CO substitution to [CH2(C5H4)2][Co(L)I2]2 ( 13–16 ) and with PMe2H to {[CH2(C5H4)2][Co(PMe2H)3]2}I4 ( 17 ). The electrophilic addition reactions of NH4PF6 and CH3I to [CH2(C5H4)2][Co(PMe3)2]2 ( 20 ) produce the complex salts {[CH2(C5H4)2][CoR(PMe3)2]2}X2 ( 21 : R = H; 22 : R = CH3). From 22a (X = I) and LiCH3 the dinuclear tetramethyldicobalt compound [CH2(C5H4)2] · [Co(CH3)2(PMe3)]2 ( 23 ) is obtained which further reacts, via the intermediate 24 , to the chiral complex {[CH2(C5H4)2] · [CoCH3(PMe3)P(OMe)3]2}(PF6)2 ( 25 ). The reaction of 20 with C2(CN)4 and E- or Z-C2H2(CO2Me)2 gives the olefin(trimethylphosphine) cobalt(I) derivatives 26 und 27 . The synthesis of the dinuclear compounds 31–38 with [Me2Si(C5Me4)2]2? as the bridging unit is also described.  相似文献   

3.
The preparation of (borinato)(cyclobutadiene)cobalt complexes from the reactions of Co(C5H5BR)(1,5-C8H12) with acetylenes C2R′2 and of [C4(CH3)4]Co(CO)2I with Tl(C5H5BR) (R,R′ = CH3, C6H5) is described.In electrophilic substitution reactions Co(C5H5BCH3)[C4(CH3)4] (IVa) is more reactive than ferrocene. CF3CO2D effects H/D-exchange in the α-position of the borabenzene ring within a few minutes at ambient temperature and in the γ-position within less than four hours Friedel-Crafts acetylation with CH3COCl/AsCl3 in CH2Cl2 affords the 2-acetyl and the 2,6-diacetyl derivative of IVa. With the more active catalyst AlCl3, ring-member substitution is effected to give cations [Co(arene)C4(CH3)4]+ (arene = C6H5CH3, 2-CH3C6H4COCH3). Vilsmeier formylation gives the 2-formyl derivative of IVa. The acyl derivatives Co(2-R1CO-6-R2C5H3BCH3)[C4(CH3)4] (R1 = CH3, R2 = H, CH3CO and R1 = R2 = H) transform to the corresponding cations [Co(ortho-R1R2C6H4)C4(CH3)4]+ in superacidic media. The mechanistic relationship between acylation and ring-member substitution is discussed in detail.  相似文献   

4.
The dinuclear cobalt complex [CH2(C5H4)2][Co(PMe3)2]2 (2), which is prepared from CoCl(PMe3)3 and [CH2(C5H4)2]Li2, reacts with NH4PF6 and CH3I to form the protonated and methylated dications {[CH2(C5H4)2][CoR(PMe3)2]2}2+ (R = H, CH3). Treatment of {[CH2(C5H4)2][CoCH3(PMe3)2]2}I2 (4) with LiCH3 affords the neutral compound [CH2(C5H4)2][Co(CH3)2(PMe3)]2 (5). Ligand substitution of [CH2(C5H4)2][Co(CO)2]2 (6) with P2Me4 and 1,2-C2H4(PMe2)2(dmpe) gives the doubly-bridged complexes [CH2(C5H4)2][Co2(CO)2(μ-P2Me4)] (7) and [CH2(C5H4)2][Co2(CO)2(μ-dmpe)] (8), respectively. Similarly, [CH2(C5H4)2][Co-(CO)(PMe3)]2 (9) is obtained from the reaction of 6 with PMe3. Oxidation of 6 with iodine gives [CH2(C5H4)2][Co(CO)I2]2 (11) which is transformed via {[CH2(C5H4)2][Co(PMe2H)3]2}I4 (12) into the triply-bridged cobalt(II) complex [CH2(C5H4)2][CO2(μ-PMe2)2] (13).  相似文献   

5.
Tetrylidynes [TbbSn≡Co(PMe3)3] ( 1 a ) and [TbbPb≡Co(PMe3)3] ( 2 ) (Tbb=2,6-[CH(SiMe3)2]2-4-(t-Bu)C6H2) are accessed for the first time via a substitution reaction between [Na(OEt2)][Co(PMe3)4] and [Li(thf)2][TbbEBr2] (E=Sn, Pb). Following an alternative procedure the stannylidyne [Ar*Sn≡Co(PMe3)3] ( 1 b ) was synthesized by hydrogen atom abstraction using AIBN from the paramagnetic hydride complex [Ar*SnH=Co(PMe3)3] ( 4 ) (AIBN=azobis(isobutyronitrile)). The stannylidyne 1 a adds two equivalents of water to yield the dihydroxide [TbbSn(OH)2CoH2(PMe3)3] ( 5 ). In reaction of the stannylidyne 1 a with CO2 a product of a redox reaction [TbbSn(CO3)Co(CO)(PMe3)3] ( 6 ) was isolated. Protonation of the tetrylidynes occurs at the cobalt atom to give the metalla-stanna vinyl cation [TbbSn=CoH(PMe3)3][BArF4] ( 7 a ) [ArF=C6H3-3,5-(CF3)2]. The analogous germanium and tin cations [Ar*E=CoH(PMe3)3][BArF4] (E=Ge 9 , Sn 7 b ) (Ar*=C6H3(2,6-Trip)2, Trip=2,4,6-C6H2iPr3) were also obtained by oxidation of the paramagnetic complexes [Ar*EH=Co(PMe3)3] (E=Ge 3 , Sn 4 ), which were synthesized by substitution of a PMe3 ligand of [Co(PMe3)4] by a hydridoylene (Ar*EH) unit.  相似文献   

6.
Basic metals. XXIV. Mono- and dinuclear cobaltthiolato complexes obtained from disulfides. Splitting of a S? S bond by a metal base The dinuclear complex C5H5(PMe3)Co(μ-CO)2Mn(CO)C5H4Me ( 3 ) reacts with the disulfides S2R2 (R ? Ph, CH2Ph) by splitting of the sulfur-sulfur bond to form C5H5(PMe3)Co(SR)2 ( 4, 5 ). From 3 and S2Me2 a mixture of C5H5(PMe3)Co(SMe)2 ( 6 ) and [C5H5Co(μ-SMe)]2 ( 7 ) is obtained. The synthesis of C5H5(PMe3)Co(SCF3)2 ( 8 ) succeeds by treating 3 with N(SCF3)3. Whereas the reactions of 4 and 5 with MeI lead to the complex C5H5(PMe3)CoI2 ( 9 ), the dinuclear complex [C5H5(PMe3)Co(μ-SPh)]2(BF4)2 ( 11 ) is formed from 4 and [OMe3]BF4. The reactions of 11 with L = PMe3 and P(OMe)3 produce the compounds [C5H5Co(PMe3)(L)SPh]BF4 ( 12, 13 ), which react with [OMe3]BF4 to yield [C5H5Co(PMe3)(L)(MeSPh)](BF4)2 ( 14, 15 ).  相似文献   

7.
C5H5Co(PMe3)2 (I) reacts with CSSe to give C5H5Co(η2-CSSe)PMe3 (IV) and C5H5Co(CS)PMe3 (V). The thiocarbonyl complex V is formed in an almost quantitative yield by Se abstraction from IV and PPh3. The corresponding compounds C5H5Co(CS)PMe2Ph (VII) and C5H5Co(CS)[P(OMe)3] (VIII) are obtained as the main products directly from CSSe and C5H5Co(PMe2Ph)2 or C5H5Co[P(OMe)3]2. In the reaction of C5H5Co(PR3)2 (PR3 = PMe3, PMe2Ph) with CSe2, the carbon diselenide complexes C5H5Co(η2-CSe2)PMe3 (XI) and C5H5Co(η2-CSe2)PMe2Ph (XIV) are formed. XI reacts with PPh3 to give C5H5Co(CSe)PMe3 (XII). Cyclopentadienylcobalt compounds containing CSSe22?, CSe32? and C2Se42? as ligands are isolated as side products in the; reactions of C5H5Co(PR3)2 and C5H5Co(CO)PR3 (PR3 = PMe3, PMe2Ph) with CSSe and CSe2, respectively. Displacement of ethylene from C5H5Rh(C2H4)PMe3 by CSSe yields the complex C5H5Rh(η2-CSSe)PMe3 (XVIII) which reacts with PPh3 to give C5H5Rh(CS)PMe3 (XIX) and with excess CSSe to give C5H5RhC2S2Se2(PMe3) (XX). Besides small amounts of C5H5Rh(η2CSSe)PMe2Ph (XXI), the corresponding metallaheterocycle C5H5RhC2S2Se2(PMe2Ph) (XXII) is formed as the main product from C5H5Rh(C2H4)PMe2Ph and CSSe.  相似文献   

8.
The complex [C5H5RhH(C2H4)PMe3]BF4 (I) reacts with NaF and NaCN by deprotonation to give C5H5Rh(PMe3)C2H4 but with NaCl, NaBr and NaI the ethylrhodium compounds C5H5RhC2H5(PMe3)X (II–IV) are obtained. The reactions of I with CO and PPri3 yield the BF4 salts of the cations [C5H5RhH(CO)PMe3]+ and [C5H5RhH(PPri3)PMe3]+ (V, VI), respectively, from which the uncharged complexes C5H5Rh(CO)PMe3 (VII) and C5H5Rh(PPRi3)PMe3 (VIII) are prepared. The carbonyl compound VII is also accessible either from C5H5Rh(CO)2 and PMe3 or from C5H5Rh(PMe3)2 and CO. The reaction of I with ethylene leads to the BF4 salt of the cation [C5H5RhC2H5(PMe3)C2H4]+ (X) which on treatment with PMe3 forms the complex [C5H5RhC2H5(PMe3)C2H4PMe3]BF4 (XI). The compound [C5H5RhH(C2H4)PPri3]BF4 (XII) reacts with NaI by insertion to yield C5H5RhC2H5(PPri3)I (XIII) whereas with PPri3 the salt [C5H5RhH(PPri3)2]BF4 (XIV) is produced. The bis(triisopropylphosphine) complex C5H5Rh(PPri3)2 (XVI) is obtained from XIV and NaH.  相似文献   

9.
The complexes C5H5Rh(PMe3)C2H3R′ (R′  H, Me, Ph) and C5H5Rh(PR3)C2H4(PR3  PMe2Ph, PPri3) are prepared by reaction of[PMe3(C2H3R/t')RhCl]2 or [PR3(C2H4)RhCl]2 and TlC5H5, respectively. They react with HBF4 in ether/propionic anhydride to form the BF4 salts of the hydrido(olefin)rhodium cations [C5H5RhH(C2H3R′)PR3]+(R  Me; R′  H, Me and R  Pri; R′  H). From C5H5Rh(PMe3)C2H3Ph and CF3COOH/NH4PF6 the η3-benzyl complex [C5H5Rh(PMe3)(η3-CH3CHC6H5)]PF6 is obtained. The reversibility of the protonation reactions is demonstrated by temperature-dependent NMR spectra and by deuteration experiments. The complexes C5H5Rh(PMe3)C2H3R′ (R′  H, Ph) and C5H5Rh(PMe2Ph)C2H4 react with CH3I in ether to give the salts [C5H5RhCH3(C2H3R′)PR3]I which in THF or CH3NO2 yield the neutral compounds C5H5RhCH3(PR3)I.  相似文献   

10.
[Co(S2CNRR’)2] complexes [R = R’ = CH3, C2H5, C3H7, C4H9, or CH2C6H5; RR’ = (CH2)5, (CH2)6, or (CH2)2O(CH2)2] were prepared via interaction of CoCl2 with sodium dithiocarbamates in aqueous medium (pH 6–7). [Co(S2CNRR’)2] are low-spin compounds (μeff 2.19–2.45 μB) with distorted square-planar geometry of the CoS4 coordination node. The Co-S bonds length is 2.22–2.26 Å, and the distance between cobalt and carbon atoms is 2.73–2.74 Å.  相似文献   

11.
The compounds C6Me6Ru(Ch3)2, C6H6Os(CH3)2PMe3 and C5H5Ir(CH3)2-Ppri3 react with [CPh3]PF6 in Ch2Cl2 to give the ethylene(hydrido)metal complexes [C6Me6RuH(C2H4)PR3]PF6, [C6H6OsH(C2H4)PMe3]PF6 and [C5H5IrH(C2H4)PPri3]PF6, respectively. Treatment of C6Me6RuCH3(C1)PMe3 with [CPh3]PF6 leads to cleavage of the RuCH6 bond instead of hydride elimination; in the presence of PMe2Ph the compound [C6Me6RuCl(PMe2Ph)PMe3]PF6 is obtained. The reaction of C5H5RhCH2OMe(PMe3)CH3 with HBF4 gives [C5H5RhH(C2H4)PMe3]BF4 and methanol. It is assumed that the formation of the ethylene(hydrido)metal complexes always occur via a M(CH2)CH3 intermediate, radical intermediates not being observed. The crystal structure of [C6Me6RuH(C2H4)PPh3]PF6 has been determined. The cation of 1.50 Å. The CC distance in the ethylene ligand is 1.41(1) Å and thus is significantly longer than in the free olefin.  相似文献   

12.
The reaction of C5H5Rh(CO)(PiPr3) (1] which is prepared from C5H5Rh(CO)2 and neat P1Pr3, with the nitriloxides 2-RC6H4CNO (R = H, Cl) leads to the formation of the metallaheterocycles C5H5(P1Pr3) ) (2, 3) in 90–95% yield. Compound 1 reacts with tosylazide to give the C,N-bound isocyanate complex C5 H5(PiPr3)Rh(η2-TosN=C=O) (6). Analogously, on treatment of C5Me5Co(CO)(PMe3) with phenylazide the phenylisocyanate derivative C5Me5(PMe3)Co(η2-PhN=C=O) (7) is formed. Protonation of 7 with CF3CO 2H affords the non-ionic carbamoylcobalt complex C5Me5(PMe3)Co[C(O)NHPh](O2CCF3) (8). The X-ray structural analysis of 2 reveals the presence of an almost planar heterocycle in which the two Rh-C distances differ by 0.045 Å  相似文献   

13.
The bis(μ-dimethylphosphido)dicobalt complex [C5H5Co(μ-PMe2)]2 (II) has been prepared from Co(C5H5 and PMe2H on almost quantitative yield. It has also been made by reduction of [C5H5Co(PMe2H)3]I2 (IV) with NaH and from the reaction of [C5H5(PMe3)Co(μ-CO)2Mn(CO)C5H4Me] with PMe2H. Protonation of II with CF3CO3H in the presence of NH4PF6 produces the PF6? salt of the (μ-hydrido)dicobalt cation [(C5H5Co)2(μ-H)(μ-PMe2)2]+ (V) which reacts with aqueous NaOH to give II. Similar treatment of [C5H5Co(μ-SMe]2 with CF3CO2H/NH4PF6 leads to the formation of [(C5H5Co)2(μ-SMe)3]PF6 (VI). The nucleophilic character of complex II has also been demonstrated in the reaction with SO2, which gives [(C5H5Co)2 (μ-PMe2)2(μ-SO2)] (VII). The crystal and molecular structures of II, the corresponding bis(μ-diphenylphosphido) compound [C5H5Co(μ-PPh2)]2 (III) and the BPh4? salt of V have been determined. In both neutral complexes the Co2P2 cores are similarly puckered, as reflected in the dihedral angle between the CoP2 and P2Co′ planes of 108.1 and 105.0° for R = Me and Ph, respectively. The CoCo bond length and the PP interatomic separations are essentially identical for both dimers. The CoCo bond length in V, 2.517(1) Å, is lower than that in II, 2.542(2) Å. The only obvious structural variation between the unprotonated and the protonated species is the large difference in the degree of canting of the C5H5 rings with respect to each other. The angles between the C5(ring)-centroid and the CoCo line are ca. 150 and 167° in II and V, respectively, which reflects the influence of the bridging hydride ligand in the cationic complex.  相似文献   

14.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

15.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes, V[1]. – Heteronuclear Co/Rh-, Co/Ir-, Rh/Ir-, and Ti/Ir Complexes with the Bis(cyclopentadienyl)methane Dianion as Bridging Ligand* The lithium and sodium salts of the [C5H5CH2C5H4]- anion, 1 and 2 , react with [Co(CO)4I], [Rh(CO)2Cl]2, and [Ir(CO)3Cl]n to give predominantly the mononuclear complexes [(C5H5-CH2C5H4)M(CO)2] ( 3, 5, 7 ) together with small amounts of the dinuclear compounds [CH2(C5H4)2][M(CO)2]2 ( 4, 6, 8 ). The 1H- and 13C-NMR spectra of 3, 5 , and 7 prove that the CH2C5H5 substituent is linked to the π-bonded ring in two isomeric forms. Metalation of 5 and 7 with nBuLi affords the lithiated derivatives 9 and 10 from which on reaction with [Co(CO)4I], [Rh(CO)2Cl]2, and [C5H5TiCl3] the heteronuclear complexes [CH2(C5H4)2][M(CO)2][M′(CO)2] ( 11–13 ) and [CH2(C5H4)2]-[Ir(CO)2][C5H5TiCl2] ( 17 ) are obtained. Photolysis of 11 and 12 leads almost quantitatively to the formation of the CO-bridged compounds [CH2(C5H4)2][M(CO)(μ-CO)M′(CO)] ( 14, 15 ). According to an X-ray crystal structure analysis the Co/Rh complex 14 is isostructural to [CH2(C5H4)2][Rh2(CO)2(μ-CO)] ( 16 ).  相似文献   

16.
The reduction of trans-RuCl2(PMe3)4 with Na/Hg and of trans-OsCl2(PMe3)4 with sodium in the presence of catalytic amounts of naphthalene gives the complexes RuH(η2-CH2PMe2)(PMe3)3 (III) and OsH(η2-CH2PMe2PMe2), (IV) in good yields. An equilibrium with the metal(0) isomers [M(PMe3)4] cannot be detected by NMR spectroscopy. III and IV react with dihalomethanes CH2X2 (X = Cl, Br, I) and CH3I to form mixtures of the dimethylphosphinomethanide complexes MX(η2-CH2PMe2)(PMe3)3 and the compounds MX2(PMe3)4. The reactions of III and IV with the Brönsted acids HCl, HBr, CF3CO2H and HC2Ph lead (with exception of M = Ru and X = C2Ph) to the complexes cis-MX2(PMe3)4. The hydrolysis of IV gives the hydrido(hydroxy) compound cis-OsH(OH)(PMe3)4, which has been characterized by 1H, 31P NMR and mass spectroscopy. The synthesis of the complex cis-Os(CH3)2(PMe3)4 is also described; the conversion into the ethylene(hydrido)metal cation [OsH(C2H4)(PMe3)4]+ failed.  相似文献   

17.
Bulky phosphanes PR3 (R = C6H11, iC3H7, t-C4H9, C6H4CH3-o) stabilize complexes of type [C5H5Ni(PR3)L]BF4 (L=S(CH3)2, (CH3)3PS), from which [C5H5Ni(PR3)2]+ cations are obtained. Iodide replaces the sulfur ligands to yield neutral C5H5Ni(PR3)I compounds. No stable [C5H5Ni(PR3)]+ cations could be obtained by iodide abstraction, but [C5H5Ni(PR3)CO]+ cations were formed in the presence of carbon monoxide.  相似文献   

18.
Photolysis of a solution of Cp*RuCp (1) in CF3CO2H generates salt [CpRu(C5Me4CH2)]-(O2CCF3)(2 • O2CCF3). The reaction of compound 1 with oleum at 20 °C through the intermediate dication [η5-(CH2C5Me4)Ru(μ:η55-C5H4C5H5)Ru(C5Me4CH2)-η6]2+ leads to the triply charged cation η7CH2)2C5Me3Ru(μη55-C5H4C5H4)Ru(C5Me4CH2)-η6]3+. Synthesis of pentamethylmetallocene derivatives CpMC5Me4X (M = Ru, Fe; X = CHO, CH2OH, CH2An) has been accomplished. The reactions of 1-hydroxymethyl-2,3,4,5-tetramethylruthenocene with acids CF3CO2H, HBF4, CF3CO2H/NaB[C6H3(CF3)2]4, and picric acid C6H2(NO2)3OH afforded salts 2•X (X = CF3CO2, BF4, B[C6H3(CF3)2]4), and (2,3,4,5-tetram ethylruthenocenyl)methyl picrate [CpRu(C5Me4CH2)-η6][(C6H2(NO2)3O] (2•C6H2(NO2)3O). Structure of the latter was characterized by single crystal X-ray diffraction.  相似文献   

19.
The reaction of C5H5Rh(PMe3)C2H4 or C5H5Rh(PMe3)CO with CH2I2 affords the compound C5H5RhCH2I(PMe3)I from which stable cationic ylide-rhodium complexes [C5H5RhCH2L(PMe3)I]X (L = PPh3, PPri3, AsPh3, SMe2, NEt3; X = I, PF6) are prepared. In the presence of NEt3, C5H5RhCH2I(PMe3)I also undergoes isomerisation to yield C5H5Rh(CH2PMe3)I2. C5H5RhCH2I(PMe3)I reacts with NaOMe and NaSMe to give C5H5RhCH2OMe(PMe3)I and C5H5RhCH2SMe(PMe3)SMe, respectively.  相似文献   

20.
[Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) reacts with PMe2Ph in CH3CN to give the red cation [Ir(PMe2Ph)4]+. This complex in CH3CN reacts with H2 to give cis-[IrH2(PMe2Ph)4]+, but on reflux for 6 h in the absence of H2, it gives the first example of a cyclometallated PMe2Ph complex fac-[IrH(PMe2C6H4)(PMe2Ph)3]+, as shown by PMR spectroscopy and preliminary X-ray crystallographic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号