首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Rb2(H2O)2][Re3(μ-Cl)3Br7(H2O)2]2 · H2O, a Mixed Halide-Hydrate with the Anionic Dimer {[Re3(μ-Cl)3Br7(H2O)2]2 · H2O}2? [Rb2(H2O)2][Re3(μ-Cl)3Br7(H2O)2]2 · H2O crystallizes as dark redbrown single crystals from an hydrobromic-acid solution of ReCl3 and RbBr at 0°C. An important feature of the crystal structure (monoclinic, C2/c; a = 1494.61(8); b = 835.71(4); c = 3079.96(19) pm; β = 97.801(4)°; Vm = 573.9(4) cm3mol?1; R = 0.060; Rw = 0.038) is the connection of two anions [Re3(μ-Cl)3Br7(H2O)2]? via a water molecule to dimers, {[Re3(μ-Cl)3Br7(H2O)2]2 · H2O}2?. These dimeric units are contained in slabs that are stacked in the [001] direction and held together by Rb+ cations and crystal water.  相似文献   

2.
Synthesis and Crystal Structures of Chlororhenates(III) with the Divalent Cations Ethylenediammonium and Piperazinium: (EnH2)2(PipzH2) [Re3Cl12]2·6H2O, (EnH2) (PipzH2) [Re3Cl12]Cl· H2O, and (PipzH2) [Re3Cl11(H2O)] · 3H2O The deep red salt (EnH2)2(PipzH2)[Re3CI12] · 6 H2O ( 1 ), (EnH2)(PipzH2)[Re3Cl12]CI · H2O ( 2 ), and (PipzH2)[Re3Cl11(H2O)] · 3H2O ( 3 ) crystallize upon evaporation from hydrochloride acid solutions of ReCl3 on addition of ethylenediammonium chloride (EnH2Cl2) and/or piperazinium chloride (PipzH2Cl2). The crystal structures have been determined from four-circle diffractometer data. 1: monoclinic; a = 1889.63(11), b = 1615.82(8), c = 790.28(4)pm; β = 101.354(5)°; Z = 2; P21/n; R = 0.119, Rw = 0.070. 2: triclinic; a = 1330.35(4), b = 1051.14(5), c = 1165.32(6)pm; α = 122.308(4), β = 102.412(3), γ = 92.226(4)°; Z = 2, P1 ; R = 0.092, Rw = 0.059. 3: orthorhombic; a = 971.43(4), b = 1619.51(7), c = 1478.87(6)pm; Z = 4; Pbcm; R = 0.034, Rw = 0.032.  相似文献   

3.
NH4[Re3Cl10(OH2)2] · 2 H2O: Synthesis and Structure. An Example for “Strong” N? H …? O and O? H …? Cl Hydrogen Bonding The red NH4[Re3Cl10(OH2)2] · 2 H2O crystallizes from hydrochloric-acid solutions of ReCl3 with NH4Cl. It is tetragonal, P41212, No. 92, a = 1157.6, c = 1614.5 pm, Z = 4. The crystal structure contains “isolated” clusters [Re3Cl10(OH2)2]?. These contain Cl…?H? O? H…?Cl units with “very strong” hydrogen bonds: distances Cl? O are only 286 pm. NH4+ has seven Cl? as nearest neighbours and, additionally, one H2O which belongs to a cluster [d(N? O1) = 271 pm] and one crystal water [d(N? O2) = 286 pm].  相似文献   

4.
A Chloroacid of Trivalent Rhenium: Hydroxonium Decachloro Diaqua Trirhenate(III) Pentahydrate, H3O[Re3Cl10(H2O)2] · 5H2O . A chloroacid of rhenium(III), H3O[Re3Cl10(H2O)2] · 5H2O, was obtained at room temperature from a saturated solution of “ReCl3 · 2H2O” with an excess of NaCl in concentrated hydrochloric acid. The crystal structure (tetragonal, P41212 (Nr. 92); a = 1 150.9(2) pm; c = 1 592.2(6) pm; Z = 4; R = 0.086; Rw = 0.066) has been determined from four-circle diffractometer data. The structure contains isolated cluster anions, [Re3ClClCli,t (H2O)]?, which are enclosed by a cage of water molecules. These building units are connected with each other through a “strong” hydrogen-bonding system.  相似文献   

5.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

6.
Synthesis, Crystal Structure and Thermal Behaviour of Cs1,5[Re3I3Cl7,5(H2O)1,5] Dark brown tetrahedra of Cs1,5[Re3I3Cl7,5(H2O)1,5] crystallize on slow cooling of a hot saturated solution of ReI3 and CsCl in conc. hydrochlorid acid. The crystal structure (cubic, P4 3m (No. 215), a = 1241.06(3)pm, Vm = 287.8(1) cm3mol?1, Z = 4, R = 0.067, Rw = 0.037) is built up from isolated building units [Re3I3Cl7,5(H2O)1,5]1,5? with statistical distribution of chloride ions and water molecules in the in plane, terminal positions. Consistent with the result based on the X-ray analysis, the IR-spectrum shows one band for the OH stretching frequencies of the water molecules coordinated to the Re3 triangle at 3240 cm?1. The anions are arranged in the fashion of a cubic closest packing with the cesium ions occupying all octahedral and one quarter of the tetrahedral interstices. Temperature-dependent Guinier-Simon photographs in connection with DTA/TG investigations reveal that Cs1,5[Re3I3Cl7,5(H2O)1,5] releases water at 190°C accompanied with a structural transition and the dehydration product decomposes at 370°C to Cs2ReCl6?xIx, Re3I3+yCl6?y and rhenium metal.  相似文献   

7.
The decahydrate of [Re3Cl9(H2O)3] is obtained from aqueous solutions of ReCl3 at zero to -5°C. The crystal structure (orthorhombic, Pnma, Z = 4; a = 1125.16(3), b = 1 630.30(5), c = 1 378.84(5) pm) has been determined from single-crystal X-ray diffractometer data. The [Re3Cl9(H2O)3] molecules are stacked in the [0 1 0] direction and the rows of such molecules are separated by the crystal water molecules. Together with the water ligands, these form a rather strong hydrogen bonding system judging from O? O distances (d = 277 pm) alone.  相似文献   

8.
The Crystal Structures of [Cu2Cl2(AA · H+)2](NO3)2 and [AA · H+]Picr? (AA · H+ = Allylammonium; Picr? = Picrat) By an alternating current electro synthesis the crystal-line π-complex [Cu2Cl2(AA · H+)2](NO3)2 has been obtained from CuCl2 · 2H2O, allylamine (AA), and HNO3 in ethanolic solution. X-ray structure analysis revealed that the compound crystallized in the monoclinic system, space group P21/a, a = 7.229(3), b = 7.824(3), c = 26.098(6) Å, γ = 94.46(5)°, Z = 4, R = 0.025 for 2 023 reflections. The crystal structure is built up of CunCln chains which are connected by π-bonding bidentate AA · H+ …? ON(O)O …? H+ · AA units. For comparision with the above complex the structure of [AA · H+]Picr? (Picr? = picrate anion) is also reported.  相似文献   

9.
Synthesis and Crystal Structure of Hydronium-tris-ethylenediamine-cobalt(rhodium)-μ-trichloro-nonachlorotrirhenate(III)-chloride, H3O[MEn3][Re3Cl12]Cl (M=Co, Rh) The chlorides H3O[MEn3][Re3Cl12]CI (M = Co, 1 ; Rh, 2 ) crystallize from hydrochloric acid solutions of ReCl3 and MEn3 · 3H2O as deep red hexagonal columns. They are isotypic and crystallize with the hexagonal system (P6 , Z = 1; 1: a = 1010.87(3); c = 794.30(4) pm, R = 0.023, Rw = 0.016; 2: a = 1018.58(3); c = 794.74(4) pm, R = 0.026, Rw = 0.018). The anions [Re3Cl12]3? are connected via H3O+ cation (C.N. 3). The large channels that run in the [001] direction contain, alternatively, the cations [MEn3]3+ and the lonesome Cl?-anions  相似文献   

10.
Crystal Structure of (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 . (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 crystallizes from hydrobromic acid solution of Re3Br9 · 2 H2O and NMe4Br at 0 – 5°C. The crystal structure (monoclinic; P21/m (Nr. 11); a = 967.9(3); b = 1 529.7(4); c = 1 710.9(4) pm; β = 91.66(2)°; Z = 2; R = 0.113; Rw = 0.068) has been determined from four-circle diffractometer data. The structure contains two different cluster units of trivalent rhenium, isolated anionic [Re3Br11(H2O)]2? units and neutral cluster units that are connected through crystal water molecules to chains{[Re3Br9(H2O)3](H2O)2}.  相似文献   

11.
On the Tri(phosphorano)borazinium Monocation [H3B3(NPEt3)3Cl2]+. Crystal Structures of Me3SiNPR3 · BH3 (R = Et, Ph), [H3B3(NPEt3)3Cl1.85Br0.15]Br · CCl4, and of the Product of Hydrolysis NH4[B5O6(OH)4] · 2 H2O The crystal structures of the donor-acceptor complexes of the silylated phosphanimines with borane which are suitable as educts for the synthesis of tri(phosphorano)borazinium ions, Me3SiNPR3 · BH3 (R = Et, Ph), are described. After addition of CCl4 the reaction of Me3SiNPEt3 with HBBr2 · SMe2 in CH2Cl2 leads to the tri(phosphorano)borazinium monocation [H3B3(NPEt3)3Cl2]+, which is characterized crystallographically as [H3B3 · (NPEt3)3Cl1.85Br0.15]Br · CCl4. It complements the series of the tri(phosphorano) cations [H3B3(NPEt3)3]3+ and [H4B3(NPEt3)3]2+ by the monocation. NH4[B5O6(OH)4] · 2 H2O can be isolated as product of hydrolysis of the tri(phosphorano)borazinium ions; its crystal structure is redetermined, because in the literature it is based on a wrong space group. Me3SiNPEt3 · BH3 ( 1 ): Space group P1, Z = 4, lattice dimensions at 213 K: a = 710.9(4), b = 1465.9(3), c = 1536.0(3) pm, α = 107.05°, β = 99.40(3)°, γ = 97.41(3)°; R = 0.0740. Me3SiNPPh3 · BH3 ( 2 ): Space group P21/c, Z = 4, lattice dimensions at 203 K: a = 934.6(1), b = 1398.6(1), c = 1626.1(1) pm, β = 103.52(1)°; R = 0.0556. [H3B3(NPEt3)3Cl1.85Br0.15]Br · CCl4 ( 3 ): Space group P21/n, Z = 4, lattice dimensions at 223 K: a = 1237.9(3), b = 1214.1(3), c = 2402.4(4) pm, β = 93.52(1)°. 3 holds a B3N3 six-membered ring in a distorted boat conformation. NH4[B5O6(OH)4] · 2 H2O ( 4 ): Space group Aba2, Z = 4, lattice dimensions at 273 K: a = 1131.3(1), b = 1103.0(1), c = 923.0(1) pm; R = 0.0564.  相似文献   

12.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

13.
Rare‐Earth‐Metal Coordination Polymers: Syntheses and Crystal Structures of Three New Glutarates, [Pr2(Glu)3(H2O)4] · 10.5H2O, [Pr(Glu)(H2O)2]Cl, and [Er(Glu)(GluH)(H2O)2] The new rare‐earth dicarboxylates [Pr2(Glu)3(H2O)4] · 10.5H2O ( 1 ), [Pr(Glu)(H2O)2]Cl ( 2 ) and [Er(Glu)(GluH)(H2O)2] ( 3 ) were obtained from the reactions of glutaric acid with PrCl3·6H2O and Er(OH)3, respectively. The crystal structures were determined by single‐crystal X‐ray diffraction. [Pr2(Glu)3(H2O)4] · 10,5H2O crystallizes in the orthorhombic space group Pnma (no. 62) with a = 871.7(4), b = 3105.0(9), c = 1308.3(9) pm and Z = 4. The crystals of [Pr(Glu)(H2O)2]Cl are monoclinic (I2/a; no. 15) with a = 786.2(1), b = 1527.6(2) c = 801.2(1) pm, β = 99.78(1)° and Z = 4. [Er(Glu)(GluH)(H2O)2] crystallizes in the monoclinic space group P21/a (no. 14) with lattice parameters of a = 882.4(1), b = 1375.3(2), c = 1267.4(2) pm, β = 107.13(1)° and Z = 4. The rare‐earth cations have the coordination numbers 10 ( 1 ), 8 + 1 ( 2 ) and 9 ( 3 ). The individual polyhedra are connected to chains and further to sheets in 1 and 2 and to double chains in 3 . Only in the water‐rich compound 1 there are channels that contain crystal water molecules. It, therefore, has a considerably lower density than 2 and 3 .  相似文献   

14.
Capability of [ReIII(tu-S)6]Cl3, where tu = thiourea, as a precursor to other ReIII complexes by ligand substitution in aqueous medium is studied. For the decomposition of [Re(tu-S)6]Cl3, experiments suggest pseudo first order kinetics and observed rate constants vary from 1.3 × 10–2 to 9.6 × 10–2 min–1 in the pH range 2.80–5.04. Experiments in presence of incoming ligand (ethylendiaminetetraacetic acid or diethylentriaminepentaacetic acid) show that ligand substitution is significantly slower than decomposition of the precursor, even when pH and temperature are modified. Similar results were obtained working with [ReIII(Metu-S)6]Cl3, where Metu = N-methylthiourea. Molecular structure of [ReIII(Metu-S)6](PF6)3 · H2O was determined by single crystal X-ray diffractometry. The coordination polyhedron around the Re ion is a distorted octahedron. The six methylthiourea ligands are bonded to the metal through the sulfur atoms [bond lengths range from 2.409(2) to 2.451(2) Å].  相似文献   

15.
The First Hydrogencarbonates with a Trimeric [H2(CO3)3]4? Group: Preparation and Crystal Structure of Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1.5 H2O Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1,5 H2O were prepared by means of the reaction of (CH3)2CO3 with RbOH resp. KOH in aqueous methanole. Trimer [H2(CO3)3]4?-anions were found in the crystal structure of Rb4H2(CO3)3 · H2O (orthorhombic, Pnma (no. 62), a = 1 218.0(1) pm, b = 1 572.3(6) pm, c = 615.9(1) pm, VEZ = 1 179.5(5) · 106 pm3, Z = 4, R1(I ≥ 2σ(I)) = 0.027, wR2(I ≥ 2σ(I)) = 0.055). K4H2(CO3)3 · 1,5 H2O crystallizes in an OD-structure. The determined superposition structure (orthorhombic, Pbam (no. 55), a = 1 161.8(1) pm, b = 597.0(1) pm, c = 383.85(3) pm, VEZ = 266.3(1) · 106 pm3, Z = 1, R1(I ≥ 2σ(I)) = 0.035, wR2(I ≥ 2σ(I)) = 0.074) can be derived from the structure of the rubidium compound. The thermal decomposition of the substances is discussed.  相似文献   

16.
The title compound, namely octa­aqua­ytterbium(III) aqua­nona­chloro­tricadmate(II) hexa­hydrate, [Yb(H2O)8][Cd3Cl9(H2O)]·6H2O, was prepared by evaporation at 278 K from an aqueous solution of the ternary system YbCl3–CdCl2–H2O and was characterized by elemental chemical analysis and by X‐ray powder and single‐crystal diffraction studies. The crystal structure can be viewed as being built from layers of double chains of CdCl6 and CdCl5(H2O) octahedra separated by antiprismatic [Yb(H2O)8]3+ cations. The stabilization of the structure is ensured by O—H⋯O and O—H⋯Cl hydrogen bonds. A comparison with the structures of SrCd2Cl6·8H2O and CeCd4Cl11·13H2O is presented.  相似文献   

17.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

18.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

19.
Preparation and Crystal Structure of (CH3NH3)8[NdCl6][NdCl4(H20)2]2Cl3 (CH3NH3)8[NdCl6][NdCl4 (H2O)2]2Cl3 is for the first time prepared and investigated by X-ray, single crystal work. It crystallizes in the monoclinic system (space group C2/m, Z = 2) with a = 9.358(5), b = 17.424(9), c = 15.360(8) Å, β = 108.30(4)°. The structure contains besides isolated Cl? ions distorted [NdCl6]3? octahedra and [NdCl4(H2O)2]? chains.  相似文献   

20.
Single crystals of fluoride hydrates Mn3F8 · 12 H2O and AgMnF4 · 4 H2O have been prepared and characterized by X-ray methods. Mn3F8 · 12 H2O crystallizes in the space group P1 (a = 623.0(3), b = 896.7(4), c = 931.8(4) pm, α = 110.07(2)°, β = 103.18(2)°, γ = 107.54(2)°, Z = 1); AgMnF4 · 4 H2O crystallizes in the space group P21/m (a = 700.9(2), b = 726.1(1), c = 749.4(3) pm, β = 107.17(3)°, Z = 2). Both structures contain Jahn-Teller-distorted [Mn(H2O)2F4]? anions as well as crystal water molecules and exhibit a complex hydrogen bond network between anions and cations, i. e. [Mn(H2O)6]2+ for the first and a polymeric [Ag(H2O)2]? cation for the second compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号