首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of ternary nitridometalates from the elements in the case of the systems Li—Cr, V, Mn—N leads to compounds which contain the transition metals in the highest (VV, CrVI) or a comparably high (MnV) oxidation state. In the corresponding calcium and strontium systems, the transition metals show a lower oxidation state (VIII, CrIII, MnIII). Transition metals with intermediate oxidation states (CrV, MnIV) are present in the quaternary (mixed cation) compounds Li4Sr2[CrN6], Li6Ca2[MnN6], and Li6Sr2[MnN6] (R3¯(#148), a = 585.9(3) pm, c = 1908.6(4) pm, Z = 3), as well as in the solid solution series Li6(Ca1—xSrx)2[MnN6].  相似文献   

2.
The Crystal Structure of Perovskites A NiIIMVIO6. II. Sr2NiWO6 The results of an X-ray single crystal study of the perovskite Sr[NiIIWVI](6)O6, ordered in the octahedral sites, are given. While Sr[NiIITeVI](6)O6 crystallizes in a monoclinically deformed structure of the perovskite (elpasolite) type, showing a phase transition to a tetragonal lattice at 675 °K, Sr[NiIIWVI](6)O6 is tetragonal already at 298°K (space group: C; a = b = 5.559 Å; c = 7.918 Å; Z = 2). The Ni? O distances found for the tungsten compound are nearly identical with those of the tellurium perovskite. In contradiction to crystal field theory very different values of the ligand field parameter Δ (ca. 25%) are observed for these two compounds however. Obviously this effect is caused by the rather different kind of bonding within the NiO6 polyhedra in the two compounds. On the basis of the structural results the Ni? O-bonding in the two perovskites is discussed in dependence of the next nearest cationic environment.  相似文献   

3.
A Contribution on Sr3Nd4O9 The metastable compound Sr3Nd4O9 was prepared by high temperature reactions and investigated by X-ray single crystal methods. It crystallizes with monoclinic symmetry: a = 1147.4; b = 723.8; c = 1324.6 pm and β = 115.6°: space group C? Cs. The metal positions show a nearly statistical distribution of Sr2+ and Nd3+. The network of the polyhedrals characterizes a new structure type, which in spite of the statistical metal distribution does not belong to the high temperature X-modification of the Rare Earth sesquioxides.  相似文献   

4.
The infrared and RAMAN spectra of Cr3O, CrO4O and CrO3 have been measured and assigned. The force constant of a modified valence force field have been calculated and compared with the force constants of CrO, Cr2O, CrO3F?, CrO3Cl?, CrO2F2 and CrO2Cl2. The valence force constant fCrO depends almost linearly on the distance d(CrO). The bending frequency δ(CrOCr) has to be reassigned. The unit cell parameters of α- and β-Cs2Cr3O10 and Cs2Cr4O13 have been determined by means of Guinier X-ray powder techniques.  相似文献   

5.
Photoluminescence of Trivalent Rare Earths in Perovskite Stacking Polytypes Ba2La2?x RE MgW2□O12, Ba6Y2?x RE W3□O18, and Sr8SrGd2?xRE W4□O24 Rhombohedral 12 L stacking polytypes Ba2La2?xREMgW2□O12 show with RE3+ = Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm; the 18 L stacking polytypes Ba6Y2?xREW3□O18 and the polymorphic perovskites Sr8SrGd2?xREW4□O24 with RE3+ = Sm, Eu, Dy, Ho, Er visible photoluminescence. The concentration dependence and the influence of the coordination number of the rare earth are reported.  相似文献   

6.
On the Atomic Distribution in Ba2SrIn2O6 with a Contribution to the Existence of the Calciumferrite-Type of Oxoindates (I) Ba2SrIn2O6 and (II) Sr0.93Ba0.07In2O4 were prepared and investigated by single crystal X-ray technique. I crystallizes with tetragonal symmetry, space group D – I4/mmm, a = 4.168; c = 21.290 Å; Z = 2; II belongs to the orthorhombic space group D – Pnma, a = 9.858; b = 3.273; c = 11.520 Å; Z = 4. I shows in respect to the formerly investigated compound BaSr2In2O6 an unexpected statistically distribution of Ba2+ and Sr2+ with the La2SrCu2O6 type. II marks the range of existence of the calciumferrite type within the alkaline earth oxoindates in direction of large radii of M2+ ions.  相似文献   

7.
Compound Formation MeO: M2O3. VI. Synthesis and Structure Determination of Sr1,33 Pb0,67 Al6O11 Single crystal of Sr1,33Pb0.67Al6O11 could be prepared with a PbO flux. (Space group D–Pnnm, a = 22.13, b = 4.88, c = 8.42 Å, Z = 4) Sr2+ and Pb2+ are statistically intercalated into a framework of AlO6 octahedra and AlO4 tetrahedra. The typical coordination of Sr2+ and Pb2+ is realized by occupying different positions in the same cavern.  相似文献   

8.
On Ordered Perovskites with Cationic Vacancies. IX. Compounds of the Type Sr2Sr1/4B □1/4WO6?Sr8SrB ?W4O24 (BIII ? La, Pr, Nd, Sm–Tm, Y) The compounds Sr2Sr1/4B□1/4WO6?Sr8SrB?W4O24 belong to the group of perovskites with octahedral cationic vacancies (cation/vacancy ratio (CN 6) ?:1). For the larger BIII ions (La, Pr, Nd, Sm–Dy) different ordering effects are observed. The perovskites with BIII ? Sm, Eu, Gd are polymorphic too (HT modification: higher ordered cubic perovskite (BIII ? Gd: a = 2X8.234 Å); LT modification: hexagonal perovskite stacking polytype (BIII ? Gd: a = 9.954 Å; c = 19.04 Å)). With the smaller BIII ions (Ho, Er, Tm and Y) a cubic, 1:1 ordered perovskite type is observed.  相似文献   

9.
On Alkaline Earth Oxoargentates. I. Strontiumargentate SrAg6O4 Single crystals of SrAg6O4 were prepared at 400–500°C and 4000 atm. O2-pressure. The X-ray investigation of the single crystals shows the orthorhombic space group D–Pnna (a = 6.518, b = 12.416, c = 8.909 Å). Sr2+ is octahedral and most of the Ag+ surrounded by weakly angled dumbbells of oxygen. In addition of these configurations metallic regions were found.  相似文献   

10.
About a Mixed Valence Oxoniobate: Sr5Nb34+Nb25+O16 The hitherto unknown compound Sr5Nb5O16 was prepared and examined by X-ray single crystal work. It crystallizes with orthorhombic symmetry (space group D–Pmn21, a = 3.992(1), b = 32.476(10), c = 5.677(2) Å; Z = 2). Sr5Nb5O16 consists of stacked perovskite-like blocks cut by a plane perpendicular to the cube face diagonal of the perovskite structure. The coordination relations of the intersections between those blocks and the distribution of Nb5+ and Nb4+ are discussed.  相似文献   

11.
Magnetic interactions in some oxyfluoroferrites of spinel structure with the formula ZnxMe2?xO4?xFx (M = Fe, Co, Ni) Whereas the ferromagnetic spin arrangement of the B-cations is not modified by the Zn2+?Fe3+ substitution in the ZnFe[Fe2+Fe3+]O4?xFx (0 ≤ x ≤ 0,50) spinel, this same substitution leads to a spin canting in the ZnFe[Co2+Fe3+]O4?xFx and ZnFe[Ni2+Fe3+]O4?xFx (0 ≤ x ≤ 0,80) simples. The difference in the magnetic behaviors with regard to the AB and BB interactions can be explained on the basis of the magnetic exchange theory.  相似文献   

12.
On Perovskites A B B WVIO6 Compounds of type ABBWVIO6 can be obtained with AII ? Ba; BI ? Li, Na and BIII ? La, Nd, Sm, Gd, Y, In, Sc just as with AII ? Sr, BI ? Li and BIII ? La, Nd, Sm, Gd, Y, In (all cubic ordered perovskites). For the cubic perovskites Sr2Na0,5La0,5WO6 and Sr2Na0,5Nd0,5WO6 additional superlattice reflections are observed (a ∽ 16.4 Å). The compounds Sr2Na0,5BWO6 crystallize with BIII ? Sm, Gd in a monoclinic and with BIII ? Y, In in a rhombic distorted perovskite lattice. For the perovskites with A = Sr — dependent on ionic radii of the B ions — two different lattice types are present.  相似文献   

13.
A New Mixed Valence Strontium Niobium Oxide Sr7Nb24+Nb45+O21 \documentclass{article}\pagestyle{empty}\begin{document}$ \widehat = $\end{document} Sr1.167NbO3.5 The unknown compound Sr7Nb6O21 kristallisiert nach Einkristall-Röntgenbeugungsdaten rhomboedrisch (Raumgruppe C? R3 ; a = 16,450(5) Å, α = 19,85(1)° trigonale Aufstellung: a = 5,670(1), c = 48,364(13) Å). The compound is built up by perovskite blocks with a width of 6 octahedra. The crystal chemistry especially of the interspace between those blocks is discussed in respect to related compounds.  相似文献   

14.
On Ordered Perovskites with Cationic Vacancies. X. Compounds of Type A B B □1/4MVIO6 ? A BIIB □M O24 with AII, BII = Ba, Sr, Ca and MVI = U, W Perovskites of type Ba8BIIB2III□UO24 show polymorphic phase transformations of order disorder type. An 1:1 ordered orthorhombic HT form is transformed into a higher ordered LT modification with a fourfold cell content (four formula units Ba8BIIB□U4O24), compared to cubic 1:1 ordered perovskites A2BMO6. In the series Ba8BaB□W4O24 and Sr8SrB□W4O24 different ordering phenomena are observed. In comparison with 1:1 ordered cubic perovskites A2BMO6, the cell contains eight formula units ABIIB□W4O24. The higher ordered cells with UVI and WVI are face centered, which has its origin in an ordering of cationic vacancies.  相似文献   

15.
LaCl(BO2)2 and Er2Cl2[B2O5]: Two Chloride Oxoborates of Trivalent Lanthanides Er2Cl2[B2O5] is obtained as single crystals by the reaction of ErCl3, Er2O3 and B2O3 with an excess of ErCl3 as flux in evacuated silica tubes after two weeks at 850 °C. The compound crystallizes as long, pale pink needles and appears to be air‐ and water‐resistant. Single‐crystalline LaCl(BO2)2 emerges from the reaction of La2O3, LaCl3, and B2O3 with an excess of B2O3 as flux in evacuated silica tubes after four weeks at 900 °C. LaCl(BO2)2 crystallizes as thin, colourless, air‐ and water‐resistant needles which tend to severe twinning due to their fibrous habit. The crystal structure of Er2Cl2[B2O5] (orthorhombic, Pbam; a = 1489.65(9), b = 1004.80(6), c = 524.86(3) pm; Z = 4) contains two crystallographically different erbium cations. (Er1)3+ resides in pentagonal‐bipyramidal coordination of seven anions while (Er2)3+ is surrounded by only six anions with the shape of an octahedron. The planar oxodiborate units [B2O5]4— consisting of two vertex‐shared [BO3]3— triangles are isolated according to {([BOO]2)4—}. LaCl(BO2)2 crystallizes isostructurally with PrCl(BO2)2 in the triclinic space group P1¯ (a = 423.52(4), b = 662.16(7), c = 819.33(8) pm; α = 82.081(8), β = 89.238(9), γ = 72.109(7)°; Z = 2). The characteristic unit consists of endless chains built up by corner‐linked [BO3]3— triangles. These quasi‐planar zigzag chains of the composition {[(B1)OO(B2)OO]2—} (≡ {[BO2]} run parallel [100]. The La3+ cations exhibit coordination numbers of ten and are coordinated by three Cl and seven O2— anions.  相似文献   

16.
On a Novel Alkaline Earth Metal Oxothallate: Sr4Tl2O7 The hitherto unknown compound Sr4Tl2O7 was prepared and investigated by X-ray single crystal methods. Sr4Tl2O7 crystallizes in the tetragonal space group C? P42nm (a = 5.006, c = 18.73 Å). Sr2+ has a trigonal prismatic surrounding whereas Tl3+ shows 2+2 oxygen neighbours. The crystal structure is completely described.  相似文献   

17.
A New Mixed Valenced Oxoosmate(VI, VII): Sr11Os26+Os27+O24 . Single crystals of Sr11Os26+Os27+O24 were prepared in closed silver bombs using SrO, osmium and an extend of KO2. It crystallizes with monoclinic symmetry, space group C–I12/a1 a = 11.703; b = 16.058; c = 11.696 Å; β = 90.03°; Z = 4. Sr11Os26+Os27+O24 shows a new crystal structure characterized by a [Sr11O24]26? network and incorporated Os6+ and Os7+ ions. Calculations of the coulombterm of lattice energy shows an orderer distribution of the two oxidation states of osmium.  相似文献   

18.
The Structures of the Hexagonal Elpasolite-Type Compounds Ba3NiSb2O9 and Ba3CuSb2O9 The results of an X-ray single crystal study of the hexagonal elpasolite Ba(NiSb2)(6)O9 are given. (Space group: C; a = b = 5.837 Å, c = 14.392 Å; Z = 2). The structure can be described by close-packed BaO3 layers alternating in the sequence c c h c c h … (hex. BaTiO3 type). Groups of two octahedra with common faces are connected by SbO6 octahedra via common corners. They are occupied alternately by Ni and Sb. The final reliability index was R = 3.0%. The Cu2+-compound is of the same structural type. The ligand field and EPR spectra are discussed in comparison with related Ni2+ and Cu2+ compounds.  相似文献   

19.
Synthesis and Investigation of NiNb2O6 Single Crystals of Columbite and Rutil Type C-NiNb2O6 (columbite type) and R-NiNb2O6 (rutil type) single crystals were prepared by solid state reactions. C-NiNb2O6 a = 14.032; b = 5.687; c = 5.033 Å, space group D—Pbcn. R-NiNb2O6 a = 4.710; c = 3.038 Å, space group D—P42/mnm. The metal positions of the rutil structure are statisticaly occupied by Ni2+ and Nb5+ ions. R-NiNb2O6 is in respect to lower temperatures a metastable compound.  相似文献   

20.
Synthesis and Crystal Structure of Sr2Zn(OH)6 and Ba2Zn(OH)6 Crystallization from supersaturated sodium hydroxozincate solutions by adding solutions of alkali earth metal hydroxides yields crystals of Sr2Zn(OH)6 and Ba2Zn(OH)6. The X-ray structure determination on these crystals was successful including all hydrogen positions: Sr2Zn(OH)6: P21/n, Z = 2, a = 5.794(1) Å, b = 6.160(1) Å, c = 8.141(1) Å, b = 91.23(1)°, N(F ³° 2σ F) = 1127, N(Var.) = 53, R1/wR2 = 0.047/0.081Ba2Zn(OH)6: P21/n, Z = 2, a = 6.043(1) Å, b = 6.336(1) Å, c = 8.451(2) Å, b = 91.23(2)°, N(F ° 2σ F) = 1669, N(Var.) = 54, R1/wR2 = 0.029/0.067. Sr2Zn(OH)6 and Ba2Zn(OH)6 crystallize isotypic in a distorted Li2O structure type. Sr2+ resp. Ba2+ form a cubic primitive arrangement. Distorted octahedra of OH around Zn2+ fill therein alternating cubic gaps in an ordered way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号