首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刺松藻(Codium fragile)经水提-醇沉获得粗多糖, 进一步将刺松藻粗多糖(CFP) 通过Q-Sepharose Fast Flow(QFF) 阴离子交换柱纯化得到6个多糖组分CFP1CFP6, 其中, 在CFP6中发现纯度较高的阿拉伯聚糖. 采用高效凝胶渗透色谱与十八角激光散射仪联用法和1-苯基-3-甲基-5-吡唑啉酮(PMP)柱前衍生高效液相色谱法对CFP6的分子量及单糖组成进行了分析. 结果表明, CFP6是一种分子量为79290的多糖, 由阿拉伯糖(Ara)和半乳糖(Gal)组成, 二者摩尔比为14.8:1.0. 通过多维核磁共振波谱、 液相色谱-质谱联用及二级质谱等方法对CFP6的糖苷键连接方式及其寡糖序列结构进行表征, 进一步阐明了该复杂多糖的特征结构. 经判断, CFP6主链由Ara组成, 通过 β-(1→3)糖苷键连接, 在Ara的C2位存在分支结构, 硫酸基位于Ara的C4或C2位.  相似文献   

2.
The acute toxicity of methylarsonic acid, CH3AsO(OH)2 (MAA), dimethylarsininc acid, (CH3)2AsO(OH) (DMAA), and trimethylarsine oxide, (CH3)3AsO (TMAO), were examined in mice with oral administration. The LD50 values of MAA, DMAA and TMAO were 1.8, 1.2 and 10.6 g kg?1 respectively. The toxicity of MAA and DMAA was very much lower than that for inorganic arsenic compounds. It was shown that TMAO has a similar acute toxicity to arsenobetaine. On the other hand, when the mice were administered 14.4 g kg?1 of TMAO once only orally, a garlic-like odor (trimethylarsine, (CH3)3As) was definitely detectable in the exhalation of the animals by the human olfactory sense within about a few minutes.  相似文献   

3.
The HPLC separation of arsenite, arsenate, methylarsonic acid and dimethylarsinic acid has been studied in the past but not in a systematic manner. The dependence of the retention times of these arsenic compounds on the pH of the mobile phase, on the concentration and the chemical composition of buffer solutions (phosphate, acetate, potassium hydrogen phthalate) and on the presence of sodium sulfate or nickel sulfate in the mobile phase was investigated using a Hamilton PRP-X100 anion-exchange column. With a flame atomic absorption detector and arsenic concentrations of at least 10 mg dm?3 all investigated mobile phases will separate the four arsenic compounds at appropriate pH values in the range 4–8. The shortest analysis time (?3 min) was achieved with a 0.006 mol dm?3 potassium hydrogen phthalate mobile phase at pH 4, the longest (?10 min) with 0.006 mol dm?3 sodium sulfate at pH 5.9 at a flow rate of 1.5 cm3 min?1. With a graphite furnace atomic absorption detector at the required, much lower, flow rate of ?0.2 cm3 min?1 acceptable separations were achievable only with the pH 6 phosphate buffer (0.03 mol dm?3) and the nickel sulfate solution (0.005 mol dm?3) as the mobile phase. To become detectable approximately 100 ng arsenic from each arsenic compound (100 μl injection) must be chromatographed with the phosphate buffer, and approximately 10 ng with the nickel sulfate solution.  相似文献   

4.
In order to separate the potential arsenite metabolites methylarsonous acid and dimethylarsinous acid from arsenite, arsenate, methylarsonic acid and dimethylarsinic acid, the pH‐dependent retention behaviour of all six arsenic compounds was studied on a Hamilton PRP‐X100 anion‐exchange column with 30 mM phosphate buffers (pH 5, 6, 7, 8 and 9) containing 20% (v/v) methanol as mobile phase and employing an inductively coupled plasma atomic emission spectrometer (ICP–AES) as the arsenic‐specific detector. Baseline separation of dimethylarsinic acid, methylarsonous acid, methylarsonic acid, arsenate and dimethylarsinous acid was achieved with a 30 mmol dm−3 phosphate buffer (pH 5)–methanol mixture (80:20, v/v) in 25 min. Arsenite is not baseline‐separated from dimethylarsinic acid under these conditions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
The aim of this study is to elucidate the structure and investigate the antimicrobial activity of an ulvan obtained by water extraction from green seaweed Ulva reticulata collected at Nha Trang sea of Vietnam by using IR, NMR, SEC-MALLS and SAXS methods. The ulvan is composed of rhamnose, galactose, xylose, manose and glucose (mole ratio Rha: Gal: Xyl: Man: Glu = 1:0.12:0.1:0.06:0.03), uronic acid (22.5%) and sulphate groups (17.6%). Chemically structural determination showed that the ulvan mainly composed of disaccharide [→4)β-D-GlcA(1→4)α-L-Rha3S-(1→]. The results from SAXS indicated that ulvan under study has a rod-like bulky chain conformation. Ulvan from U. reticulata showed high antimicrobial activity, with inhibition zone diameter of 20 mm against Enterobacter cloace and 18 mm against Escherichia coli.  相似文献   

6.
The modifying effects of dimethylarsinic acid (DMA) on tumor induction in various organs were examined using a multi-organ rat carcinogenesis bioassay. A total of 124 six-week-old male F344/DuCrj rats were divided randomly into seven groups. For establishment of wide-spectrum initiation, animals in Groups 1–5 were treated with five carcinogens, namely N-nitrosodiethylamine (DEN), N-methyl-N-nitrosourea (MNU), 1,2-dimethylhydrazine (DMH), N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) and N-bis(2-hydroxypropyl)nitrosamine (DHPN) in the first four weeks. After a two-week interval, Groups 1–5 were then given 0, 50, 100, 200 and 400 ppm DMA, respectively, in drinking water. Groups 6 and 7 received 100 and 400 ppm DMA without any carcinogen pretreatment. All rats were sacrificed at the end of week 30. In the initiated groups (Groups 1–5), DMA enhanced tumor development in the urinary bladder, kidney, liver and thyroid gland. The main arsenic species in urine samples was DMA itself. In conclusion, the observed enhancement of carcinogenesis in the urinary tract as well as in the liver and thyroid gland may be directly due to this arsenic compound.  相似文献   

7.
A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L− 1 H3PO4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g− 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.  相似文献   

8.
In order to understand the distribution and the cycle of arsenic compounds in the marine environment, the horizontal distributions of arsenic(V) [As(V)], arsenic(III) [As(III)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in the Indian Pacific Oceanic surface waters have been investigated. This took place during cruises of the boat Shirase from Tokyo to the Syowa Station (15 November–19 December 1990), of the tanker Japan Violet from Sakai to Fujayrah (28 July–17 August 1991) and of the boat Hakuho-maru from Tokyo to Auckland (19 September–27 October 1992). Vertical distributions of arsenic in the west Pacific Ocean have also been investigated. The concentration of As(V) was found to be relatively higher in the Antarctic than in the other areas. Its concentration varied from 340 ng dm?3 (China Sea) to 1045 ng dm?3 (Antarctic). On the other hand, the concentrations of the biologically produced species, MMAA and DMAA, were extremely low in the Antarctic and southwest Pacific waters. Their concentrations in Antarctic waters were 8 ng dm?3 and 22 ng dm?3 and those in the southwest Pacific were 12 ng dm?3 and 25 ng dm?3. In the other regions the concentration varied from 16 ng dm?3 (China Sea) to 36 ng dm?3 (north Indian Ocean) for MMAA and from 50 ng dm?3 (east Indian Ocean) to 172 ng dm?3 (north Indian Ocean) for DMAA. As a result, with the exception of Antarctic and southwest Pacific waters, the percentages of each arsenic species in the surface waters were very similar and varied from 52% (east Indian Ocean) to 63% (northwest Pacific Ocean) for As(V), from 22% (northwest Pacific Ocean) to 27% (east Indian Ocean) for As(III) and from 15% (northwest Pacific Ocean) to 21% (north and east Indian Oceans) for the methylated arsenics (MMAA+DMAA). These percentages in Antarctic waters were 97%, 0.2% and 2.8%, respectively, and those in the southwest Pacific Ocean were 97% for As(V)+As(III) and 3% for MMAA+DMAA. The very low concentrations of the biologically produced species in Antarctic waters and that of methylated arsenic in southwest Pacific waters indicated that the microorganism communities in these oceans was dominated by microorganisms having a low affinity towards arsenic. Furthermore, microorganism activity in the Antarctic was also limited due to the much lower temperature of the seawater there. The vertical profile of inorganic arsenic was 1350 ng dm?3 in surface waters, 1500 ng dm?3 in bottom waters with a maximum value of 1700 ng dm?3 at a depth of about 2000 m in west Pacific waters. This fact suggested the uptake of arsenic by microorganisms in the surface waters and the co-precipitation of arsenic with hydrated heavy-metal oxides in bottom waters. The suggested uptake of inorganic arsenic and subsequent methylation was also supported by the profile of DMAA, with a high concentration of about 26 ng dm?3 in surface water and a significant decrease to a value of 9 ng dm?3 at a depth of 1000 m.  相似文献   

9.
12‐Tungstophosphoric acid supported on aerosil silica and silica‐coated γ‐Fe2O3 nanoparticles was prepared and characterized using transmission electron microscopy,scanning electron microscopy,and inductively coupled plasma atomic emission spectroscopy.The catalytic activity of the two prepared catalysts was compared in the synthesis of 1,8‐dioxo‐9,10‐diaryldecahydroacridines in water.12‐Tungstophosphoric acid was highly dispersed on the silica‐coated γ‐Fe2O3 nanoparticles and showed higher activity and a higher reuse number compared with the acid supported on aerosil silica.The catalyst could be recovered simply by using an external magnetic field and could be reused several times without appreciable loss of its catalytic activity.  相似文献   

10.
The growing interest in the preservation of our environment is pushing for solutions to develop less impacting materials. Thus, the development of biocomposites and is recyclable and compostable end-of-life resources seem an interesting alternative. In this study, the characterization of Polylactic acid (PLA) reinforced with treated and untreated Olive husk flour (OHF) were investigated. More then, their biodegradation with a Bacillus sp. has been evaluated. The main results show that the bacteria degraded both the PLA and the composite. This degradation was confirmed by the release of reducing sugars as well as increasing weight loss of PLA matrix and composites.  相似文献   

11.
采用在线扫集-胶束毛细管电动色谱法(sweeping-MEKC)分离测定扛板归中的阿魏酸、咖啡酸和原儿茶酸。采用未涂层熔融石英毛细管(50 cm×50μm,有效柱长36 cm);环境温度25℃;缓冲体系为20 mmol/L NaH2PO4-80mmol/L十二烷基磺酸钠(SDS)-12.5%乙腈(V/V)(pH 2.20),紫外检测波长为216 nm,运行分离电压-20 kV,进样时间100 s。在优化条件下,3种有机酸均在20 min内出峰,峰面积RSD均小于5%。检出限分别达到98.52,118.73和27.27μg/L。  相似文献   

12.
An efficient green catalyst comprising 12-tungstophosphoric acid (TPA) and MCM-41 was synthesized. The catalytic activity was evaluated for liquid phase solvent free diesterification of succinic acid. The support and the synthesized catalyst were characterized by various physico-chemical techniques. Fourier transform infrared, diffuse reflectance spectroscopy, and 31P NMR spectra indicate that the Keggin structure of TPA was not destroyed after anchoring to MCM-41. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that TPA is uniformly dispersed inside the channels without disturbing the hexagonal array of MCM-41. The present contribution reports solvent free diesterification of succinic acid with alcohols under mild reaction conditions. The catalyst shows higher activity toward diester, especially for dioctyl succinate 99% yield was obtained with very high turnover number, 12.43×104. Also the catalyst shows potential of being used as recyclable catalytic material after simple regeneration without loss of any catalytic activity.  相似文献   

13.
浸提法-ICP-AES测定化妆品中有害元素铅、砷、汞   总被引:1,自引:0,他引:1  
戴骐  周瑛  朱晔 《分析试验室》2007,26(11):82-84
建立了浸提法-电感耦合等离子体发射光谱(ICP-AES)测定化妆品中Pb、As、Hg的方法,并对ICP-AES工作参数及条件进行了优化和选择.Pb、As、Hg检出限分别为0.0078,0.011和0.023 μg/mL.线性范围为0~500 μg/L,相对标准偏差为1.3%~3.9%;回收率为90%~101%.适用于化妆品中Pb、As、Hg的日常检测.  相似文献   

14.
A chitosan resin functionalized with 3,4-diamino benzoic acid (CCTS-DBA resin) was newly synthesized by using a cross-linked chitosan (CCTS) as base material. The adsorption behavior of trace amounts of elements on the CCTS-DBA resin was examined by the pretreatment with a mini-column and measurement of the elements by inductively coupled plasma-Mass spectrometry (ICP-MS). Arsenic(V) could be retained on the CCTS-DBA resin at pH 3 as an oxoanion of H2AsO4. Selenium(VI) is strongly adsorbed at pH 2 and pH 3 as an oxoanion of SeO42−, while selenium(IV) as HSeO3 is adsorbed on the resin at pH 3. The sorption capacities are 82, 64, and 88 mg g−1resin for As(V), Se(IV), and Se(VI), respectively. The effect of common anions and cations on the adsorption of As(V), Se(IV), and Se(VI) were studied; there was no interference from such anionic matrices as chloride, sulfate, phosphate, and nitrate up to 20 ppm, as well as from such artificial river water matrices as Na, K, Mg, and Ca after passing samples through the mini-column containing the resin. The CCTS-DBA resin was applied to the collection of arsenic and selenium species in bottled drinking water, tap water, and river water.  相似文献   

15.
A new method using diluted reagents (nitric and hydrochloric acids and oxygen peroxide) and ultrasound energy to assist metals acid leaching with from edible seaweed was optimized. The method uses a first sonication at high temperature with hydrochloric acid as a previous stage to an ultrasound-assisted acid leaching with 7 ml of an acid solution containing nitric acid, hydrochloric acid and hydrogen peroxide at concentrations of 3.7, 3.0 and 3.0 M, respectively. Optimum conditions for the first sonication step were ultrasound energy at 17 kHz, sonication temperature at 65 °C, an acid volume of 2 ml, an hydrochloric acid concentration of 6.0 M and a sonication time of 10 min. It has been found that the first sonication stage at high temperature with hydrochloric acid is necessary to obtain quantitative recoveries for As, Ba, Fe and V. Otherwise quantitative recoveries were reached for the other elements investigated (Ca, K, Na, Mg, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The repeatability of the ultrasound-assisted acid leaching method was around 10% for all elements. Adequate limit of detection and limit of quantification were reached by using inductively coupled plasma-optical emission spectrometry (ICP-OES) for measurements. The method resulted accurate after analysing several seaweed certified reference materials (IAEA-140/TM, NIES-03 and NIES-09). The method was finally applied to the multi-element determination in edible seaweed samples.  相似文献   

16.
We report boric acid as a highly efficient and eco-friendly catalyst for the selective oxidation of sulfides to sulfoxides or sulfones, in excellent yields under solvent-free conditions, using 30% hydrogen peroxide as an oxidant. Various sulfides possessing functional groups such as alcohol, ester, and aldehyde are successfully and selectively oxidized without affecting sensitive functionalities.  相似文献   

17.
18.
A simple HPLC method for the simultaneous determination of phenylglyoxylic acid (PGA), mandelic acid (MA), styrene glycol (SG) and hippuric acid (HA) in cell culture medium was developed. Analysis was performed on a C(18) column with a mobile phase composed of methanol-potassium dihydrogen phosphate (pH 2.5; 10 mM; 10:90, v/v) at 220 nm. The flow-rate of mobile phase was set at 0.5 mL/min. The mean absolute recoveries of PGA, MA, SG and HA were 95.9, 98.4, 98.0 and 97.1%, respectively. The inter-day and intra-day precisions, determined at three concentration levels, were less than 10% of RSD. The limits of quantification for PGA, MA, SG and HA were 13.2, 13.1, 14.5 and 11.2 microM with RSD less than 20%. The limits of detection for PGA, MA, SG and HA were 4.6, 4.6, 5.1 and 3.9 microM, respectively. The method was successfully applied to study the stereoselective metabolism of SG and MA in primary culture of rat hepatocytes. The results show that there is stereoselective metabolism for both of MA and SG in primary culture of rat hepatocytes. The extent of biotransformation from S-MA to PGA is significantly greater than that from the R enantiomer and the main metabolites are PGA and HA for S-SG and R-SG, respectively.  相似文献   

19.
A novel bioelectrochemical method for the direct determination of D(−) L(+) lactic acid and of L(−) malic acid in wines is presented. Multienzymatic biosensors were realized for the selective determination of the three analytes: D(−) and L(+) lactic acid were measured by a trienzymatic biosensor based on the catalytic activities of the enzymes L(+) lactate oxidase (LOD), D(−) lactate dehydrogenase (D-LDH) and horseradish peroxidase (HRP); L(−) malic acid was measured by a bienzymatic electrode, realized by coupling the enzymes L(−) malic dehydrogenase (L-MDH) and horseradish peroxidase (HRP). In both cases the enzymes were immobilized on an oxygen selective Clark electrode.The simultaneous determination of the two organic acids can be accomplished either in batch or in a flow injection analysis apparatus using the same biosensors as detectors. The analytical performance of the method, tested in standard aqueous solutions and on real samples of wines, showing high repeatability, short response times and reduced cost of analysis, suggest that the experimental approach here described could be followed to monitor the progress of malolactic fermentation.  相似文献   

20.
Aromatic aldehydes undergo crossed-aldol condensation with ketones in the presence of catalytic amount of sulfamic acid(SA) to afford the correspondingα,β-unsaturated aldol products under solvent-free conditions in good to high yields at 45-80℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号