首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Two model polymers, containing fluorene as an electron‐donating moiety and benzothiadiazole (BT) as an electron‐accepting moiety, have been synthesized by Suzuki coupling reaction. Both polymers are composed of the same chemical composition, but the BT acceptor can be either at a side‐chain (i.e., S‐polymer) or along the polymer main chain (i.e., M‐polymer). Their optical, electrochemical, and photovoltaic properties, together with the field‐effect transistor (FET) characteristics, have been investigated experimentally and theoretically. The FET carrier mobilities were estimated to be 5.20 × 10?5 and 3.12 × 10?4 cm2 V?1 s?1 for the S‐polymer and M‐polymer, respectively. Furthermore, polymeric solar cells (PSCs) with the ITO/PEDOT:PSS/S‐polymer or M‐polymer:PC71BM(1:4)/Al structure were constructed and demonstrated to show a power conversion efficiency of 0.82 and 1.24% for the S‐polymer and M‐polymer, respectively. The observed superior device performances for the M‐polymer in both FET and PSCs are attributable to its relatively low band‐gap and close molecular packing for efficient solar light harvesting and charge transport. This study provides important insights into the design of ideal structure–property relationships for conjugate polymers in FETs and PSCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Nonlinear optical absorption at a wavelength of 1080 nm for nanocomposite thin films made from polymers and single-walled carbon nanotubes (SWNTs) was studied by the longitudinal scanning (z-scan) technique. Two SWNT types differing in the synthesis procedure (HipCO and arc evaporation techniques) were used for the preparation of nanocomposites based on the polymers carboxymethylcellulose (CMC) and poly(vinyl alcohol) (PVAL). The nonlinear absorption coefficients were measured to be ?5.0 × 10?7 and ?3.9 × 10?7 cm/W for the CMC-SWNT/HipCO and CMC-SWNT/Arc composite films and ?1.7 × 10?7 and ?0.9 × 10?7 cm/W for the PVAL-SWNT/HipCO and PVAL-SWNT/Arc films, respectively. It was found that the film nanocomposites based on carboxymethylcellulose had a higher absolute value of the nonlinear absorption coefficient than the films in which PVAL was used as the polymer matrix.  相似文献   

3.
Three types of conducting polymers, polyaniline (PANI), poly(N-methylaniline) (PNMA), poly(N-ethylaniline) (PNEA) were electrochemically deposited on pencil graphite electrode (PGE) surfaces characterized as electrode active materials for supercapacitor applications. The obtained films were electrochemically characterized using different electrochemical methods. Redox parameters, electro-active characteristics, and electrostability of the polymer films were investigated via cyclic voltammetry (CV). Doping types of the polymer films were determined by the Mott-Schottky method. Electrochemical capacitance properties of the polymer film coating PGE (PGE/PANI, PGE/PNMA, and PGE/PNEA) were investigated by the CV and potentiostatic electrochemical impedance spectroscopy (EIS) methods in a 0.1 M H2SO4 aqueous solution. Thus, capacitance values of the electrodes were calculated. Results show that PGE/PANI, PGE/PNMA, and PGE/PNEA exhibit maximum specific capacitances of 131.78 F g?1 (≈ 436.50 mF cm?2), 38.00 F g?1 (≈ 130.70 mF cm?2), and 16.50 F g?1 (≈ 57.83 mF cm?2), respectively. Moreover, charge-discharge capacities of the electrodes are reported and the specific power (SP) and specific energy (SE) values of the electrodes as supercapacitor materials were calculated using repeating chronopotentiometry.  相似文献   

4.
New bismaleimide monomers with various structures, synthesized by the reaction of maleic anhydride and new diamines, were used in the reaction with diamines to yield polyaspartimides. The structure of these monomers was confirmed by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy, and polymer structure was evidenced by FT-IR spectroscopy. The resulting new compounds were characterized by differential scanning calorimetry (DSC) and thermogravimetry (TGA). The polymers exhibited film-forming ability. The quality of these films was studied by atomic force microscopy (AFM), and their mechanical properties (tensile strength, tensile modulus) were investigated.  相似文献   

5.
Isotropic and oriented thin films of rigid-rod, rigid-rod pseudo-ladder, and ladder polymers were ion-bombarded with 84Kr+ to a dose of 4 × 1016 ions/cm2. The bombardment was conducted at two conditions: one at 190 keV energy with 0.12 μA/cm2 current density and the other at 200 keV energy with 2.0 μA/cm2 current density. With the low current density, the polymers developed a uniform ion-bombarded layer of about 0.35 μm at the surface. This layer showed an electrical conductivity on the order of 10?3s/cm at ambient conditions, an enhancement of 6 to 9 orders of magnitude from the pristine polymers. The enhanced conductivity was found to decrease to 10?6s/cm after the implanted krypton was removed by heating under reduced pressure. It suggests that the enhanced conductivity was due to a synergistic effect of structural change of the polymers and chemical doping by the im-planted ions. With the high current density, most polymer films, except that of rigid-rod pseudo-ladder poly(p-(2,5-dihydroxy) phenylene benzobisthiazole) (DPBT), developed an additional fibrous network structure over the uniform ion-bombarded layer. The comparable conductivity, 53 to 157 s/cm, measured for the various ion-bombarded films in-dicated that neither the molecular structure, rigid-rod or ladder, nor the molecular packing order, isotropic or oriented, constituted significant effect on the conductivity of ion-bombarded polymers. Since krypton could not be detected in the polymers ion-bombarded with high current density, the enhanced conductivity was attributed to the structural change of the polymers. The DPBT films ion-bombarded with high current density showed holes of micron size, probably due to the decomposition of hydroxy pendents from the rigid-rod backbone. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
New donor–acceptor conjugated copolymers based on alkylthienylbenzodithiophene (BDTT) and alkoxynaphthodithiophene (NDT) have been synthesized and compared with their benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based analogues to investigate the effect of the extended π conjugation of the polymer main chain on the physicochemical properties of the polymers. A systematic investigation into the optical properties, energy levels, field‐effect transistor characteristics, and photovoltaic characteristics of these polymers was conducted. Both polymers demonstrated enhanced photovoltaic performance and increased hole mobility compared with the BDT‐based analogue. However, the BDTT‐based polymer (with π‐conjugation extension perpendicular to main chain) gave the highest power conversion efficiency of 5.07 % for the single‐junction polymer solar cell, whereas the NDT‐based polymer (with π‐conjugation extension along the main chain) achieved the highest hole mobility of approximately 0.1 cm2 V?1 s?1 based on the field‐effect transistor; this indicated that extending the π conjugation in different orientations would have a significant influence on the properties of the resulting polymers.  相似文献   

7.

In this study, the nine coordination polymers of Fe(III), Co(II) and Ni(II) salts have been synthesized using polyacrylamide (PAA), polt(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVA) and their structures were characterized by magnetic and conductivity measurements, ultraviolet‐visible (UV‐VIS), FTIR spectroscopy and thermogravimetric analysis (TGA). The structures of Fe(III) complexes in the all coordination polymers were found as tetrahedral. The structures of PAA‐Co(II) coordination polymer was determined as octahedral geometry whereas PEG‐Co(II) and PVA‐Co(II) complexes showed as tetrahedral structure. PAA‐Ni(II) and PEG‐Ni(II) complexes have octahedral geometry, whereas PVA‐Ni(II) has a square planar structure. Besides, the stress‐strain experiments of PVA‐metal coordination polymers obtained rubber‐like structure were carried out and the value of breaking‐strain of PVA‐Ni(II) complex was found to be about 17% of vulcanized natural rubber. The conductivities of the resulting polymer‐metal complexes were measured by four‐probe technique and were found in the range 10?5?10?6 Scm?1. Thus, it was suggested that they can be used in the field potential application of conducting polymers. TGA results revealed that among the complexes PEG‐Fe(III) and PVA‐Fe(III) complexes have the highest thermally stable.  相似文献   

8.
Two novel porphyrin‐based D‐A conjugated copolymers, PFTTQP and PBDTTTQP , consisting of accepting quinoxalino[2,3‐b′]porphyrin unit and donating fluorene or benzo[1,2‐b:4,5‐b′]dithiophene unit, were synthesized, respectively via a Pd‐catalyzed Stille‐coupling method. The quinoxalino[2,3‐b′]porphyrin, an edge‐fused porphyrin monomer, was used as a building block of D‐A copolymers, rather than the simple porphyrin unit in conventional porphyrin‐based photovoltaic polymers reported in literature, to enhance the coplanarity and to extend the π‐conjugated system of polymer main chains, and consequently to facilitate the intramolecular charge transfer (ICT). The thermal stability, optical, and electrochemical properties as well as the photovoltaic characteristics of the two polymers were systematically investigated. Both the polymers showed high hole mobility, reaching 4.3 × 10?4 cm2 V?1 s?1 for PFTTQP and 2.0 × 10?4 cm2 V?1 s?1 for PBDTTTQP . Polymer solar cells (PSCs) made from PFTTQP and PBDTTTQP demonstrated power conversion efficiencies (PCEs) of 2.39% and 1.53%, both of which are among the highest PCE values in the PSCs based on porphyrin‐based conjugated polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013  相似文献   

9.
Two donor-acceptor conjugated polymers, namely poly{4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)benzo[1,2-b:4,5-b']difuran-alt-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione}(PBDFTTPD) and poly{4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b: 4,5-b']dithiophene-alt-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione}(PBDTTTPD), were synthesized by Stille coupling polymerization reactions. Their structures were verified by 1H-NMR and elemental analysis, the molecular weights were determined by gel permeation chromatography and the thermal properties were investigated by thermogravimetric analysis. The polymer films exhibited broad absorption bands. The hole mobility of PBDFTTPD:PC71BM(1:2, w/w) blend reached up to 5.5 × 10?2 cm2 v?1 s?1 by the space-charge-current method. Preliminary photovoltaic cells based on the device structure of ITO/PEDOT:PSS/PBDFTTPD:PC71BM(1:2, w/w)/Ca/Al showed a power conversion efficiency of 2.32% with an open-circuit voltage of 0.90 V and a short circuit current of 4.40 mA cm?2.  相似文献   

10.
Two donor/acceptor (D/A)‐based benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,3‐biphenyl quinoxaline copolymers of P 1 and P 2 were synthesized pending different functional groups (thiophene or triphenylamine) in the 4‐positions of phenyl rings. Their thermal, photophysical, electrochemical, and photovoltaic properties, as well as morphology of their blending films were investigated. The poly(4,8‐bis((2‐ethyl‐hexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4′‐bis(N,N‐bis(4‐(octyloxy) phenylamino)‐ 1,1′‐biphen‐4‐yl)quinoxaline) ( P 2) exhibited better photovoltaic performance than poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4‐(5‐octylthiophen‐2‐yl)phenyl)quinoxaline) ( P 1) in the bulk‐heterojunction polymer solar cells with a configuration of ITO/PEDOT:PSS/polymers: [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM)/LiF/Al. A power conversion efficiency of 3.43%, an open‐circuit voltage of 0.80 V, and a short‐circuit current of 9.20 mA cm?2 were achieved in the P 2‐based cell under the illumination of AM 1.5, 100 mW cm?2. Importantly, this power conversion efficiency level is 2.29 times higher than that in the P 1‐based cell. Our work indicated that incorporating triphenylamine pendant in the D/A‐based polymers can greatly improved the photovoltaic properties for its resulting polymers.  相似文献   

11.
Thin plasma polymer films were deposited from several liquid monomers (mainly siloxane‐type monomers) in a low‐temperature cascade arc torch (CAT) reactor. The effects of monomer structures and plasma parameters on internal stress in the films were experimentally studied. By appropriately adjusting these factors, the internal stress in the film was reduced nearly two orders of magnitude from 109 to 107 dyn/cm2. It was noted that the polymer films prepared from siloxane‐type monomers showed lower internal stress than their hydrocarbon counterpart. Fourier transform‐infrared spectroscopy (FTIR) studies indicated that a large amount of Si O Si structure from siloxane monomers, which are very flexible bonds, was preserved in the resultant plasma polymers. Ellipsometry results suggested that the internal stress can be qualitatively correlated with the refractive index of the plasma polymer film. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1577–1587, 1999  相似文献   

12.
A series of modified thiophene groups containing PPV‐based semiconducting materials, poly[(2,5‐bis(octyloxy)‐1,4‐phenylenevinylene)‐alt‐(2,2′bithienylenevinylene)] ( PPBT ), poly[(2,5‐bis(octyloxy)‐1,4‐phenylenevinylene)‐alt‐(5,5‐thiostilylenevinylene)] ( PPTVT ), have been synthesized through a Horner coupling reaction. From the FTIR and 1H NMR spectroscopy, the configuration of the vinylene groups in the polymers was all trans (E) geometry. The weight‐average molecular weights (Mw) of PPBT and PPTVT were found to be 11,700 and 11,800, with polydispersity indices of 2.51 and 2.53, respectively. PPBT and PPTVT thin films exhibit UV–visible absorption maxima at 538 and 558 nm, respectively, and the strong absorption shoulder peaks at 578 and 602 nm, respectively. Solution processed field‐effect transistors (FET) fabricated using all the polymers showed p‐type OTFT characteristics. The field‐effect mobility of the PPTVT was obtained up to 2.3 × 10?3 cm2 V?1 s?1, an on/off ratio of 1.0 × 105 with ambient air stability. Studies of the atomic force microscopy (AFM) and X‐ray diffraction (XRD) analysis of the polymer thin films revealed that all the polymers were amorphous structure. The greater planarity and rigidity of PPTVT compared to PPBT results in elongation of conjugation length and better π–π stacking of polymer chains in amorphous region, which leads to improved FET performance. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 111–120, 2009  相似文献   

13.
Composite polymer electrolyte films comprising polyethylene oxide (PEO) as the polymer host, LiClO4 as the dopant, and NiO nanoparticle as the inorganic filler was prepared by solution casting technique. NiO inorganic filler was synthesized via sol-gel method. The effect of NiO filler on the ionic conductivity, structure, and morphology of PEO-LiClO4-based composite polymer electrolyte was investigated by AC impedance spectroscopy, X-ray diffraction, and scanning electron microscopy, respectively. It was observed that the conductivity of the electrolyte increases with NiO concentration. The highest room temperature conductivity of the electrolyte was 7.4?×?10?4 S cm?1 at 10 wt.% NiO. The observation on structure shows the highest conductivity appears in amorphous phase. This result has been supported by surface morphology analysis showing that the NiO filler are well distributed in the samples. As a conclusion, the addition of NiO nanofiller improves the conductivity of PEO-LiClO4 composite polymer electrolyte.  相似文献   

14.
Three main chain thermotropic liquid crystalline (LC) azobenzene polymers were synthesized using the azobenzene twin molecule (P4P) having the structure Phenylazobenzene‐tetraethyleneglycol‐Phenylazobenzene as the AA monomer and diols like diethylene glycol, tetraethylene glycol (TEG), and hexaethylene glycol as the BB comonomer. Terminal ? C(O)OMe units on P4P facilitated transesterification with diols to form polyesters. All polymers exhibited stable smectic mesophases. One of the polymers, Poly(P4PTEG) was chosen to prepare composite polymer electrolytes with LiCF3SO3 and ionic conductivity was measured by ac impedance spectroscopy. The polymer/0.3 Li salt complex exhibited a maximum ionic conductivity in the range of 10?5 S cm?1 at room temperature (25 °C), which increased to 10?4 S cm?1 above 65 °C. The temperature dependence of ionic conductivity was compared with the phase transitions occurring in the sample and it was observed that the glass transition had a higher influence on the ionic conductivity compared to the ordered LC phase. Reversible ionic conductivity switching was observed upon irradiation of the polymer/0.3 Li salt complex with alternate UV and visible irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 629–641  相似文献   

15.
Redox‐active 6‐oxoverdazyl polymers were synthesized via ring‐opening metathesis polymerization (ROMP) and their solution, bulk, and thin‐film properties investigated. Detailed studies of the ROMP method employed confirmed that stable radical polymers with controlled molecular weights and narrow molecular weight distributions (Ð < 1.2) were produced. Thermal gravimetric analysis of a representative example of the title polymers demonstrated stability up to 190 °C, while differential scanning calorimetry studies revealed a glass transition temperature of 152 °C. Comparison of the spectra of 6‐oxoverdazyl monomer 12 and polymer 13 , including FT‐IR, UV‐vis absorption, and electron paramagnetic resonance spectroscopy, was used to confirm the tolerance of the ROMP mechanism for the 6‐oxoverdazyl radical both qualitatively and quantitatively. Cyclic voltammetry studies demonstrated the ambipolar redox properties of polymer 13 (E1/2,ox = 0.25 and E1/2,red = ?1.35 V relative to ferrocene/ferrocenium), which were consistent with those of monomer 12 . The charge transport properties of thin films of polymer 13 were studied before and after a potential of 5 V was applied, revealing a drastic drop in the resistivity from 106?1010 Ω m or more to 1.7 × 104 Ω m and suggesting the potential usefulness of polymer 13 in bistable electronics. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1803–1813  相似文献   

16.
It is important to develop high performances biodegradable polymers to eliminate the “white pollution” evoked by petroleum‐based polymer. Thermoplastic starch (TPS) with nano‐ellipse configuration was fabricated to reinforce the performances of poly (butylene adipate co‐terephthalate) (PBAT) biocomposites. Effects of tartaric acid (TA) (0.5% wt) on the structure of TPS and compatibility for PBAT were evaluated by Fourier‐transform infrared spectroscopy (FTIR), viscosity and rheological measurement, dynamic mechanical analysis (DMA) and scanning electron microscope (SEM), respectively. They revealed that TA reduced the molecular weight of starch and shear viscosity of TPS were beneficial for TPS dispersing in PBAT matrix with 184‐nm averaged diameter. PBAT/TPS‐TA (70:30 wt%) biocomposite films were blew with different blow‐up ratio. The morphology of films presented that nano‐TPS‐TA wrapped in the PBAT matrix and deformed from ball to capsule feature without agglomeration. Compared with those of PBAT film, the increment in elongation at break of PBAT/TPS‐TA film was 100%. The air permeability and UV‐VIS transmittance of PBAT/TPS‐TA films decreased from 6.92 × 10?9 to 3.72 × 10?9 cm3·cm·cm?2 s?1 Pa?1 and 47.6% to 23.5%, respectively. This study proposed a facile approach to fabricate low‐cost PBAT films with significant improved mechanical, optical, and air barrier properties for commercial application. Mechanism for nanoparticles of TPS‐TA motivated the elevated performances was proposed, synchronously.  相似文献   

17.
The alkyne moieties of poly(3‐hexylthienyleneethynylene) were reacted with tetracyanoethylene or 7,7,8,8‐tetracyanoquinodimethane by microwave irradiation to produce donor–acceptor chromophores in the polymer main chain. The resulting polymers were fully characterized by GPC, 1H NMR, and IR spectroscopies, and elemental analyses. They were both thermally and chemically stable, as revealed by thermogravimetric analyses and ESR measurements. UV–vis‐NIR spectroscopy revealed charge‐transfer bands in the low‐energy region, and electrochemistry confirmed the narrower band gaps with the elevated HOMO and lower LUMO levels relative to the precursor polymer. To take advantage of these postfunctionalization methods, p‐type doping of the polymers with I2 was attempted. Room temperature conductivities of the postfunctionalized polymers reached 4.5 × 10?5 S cm?1, which was about 10 times greater than that of the precursor polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Two furan‐flanked polymers poly{3,6‐difuran‐2‐yl‐2,5‐di(2‐octyldodecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐alt‐thienylenevinylene} (PDVFs), with a highly π‐extended diketopyrrolopyrrole backbone, are developed for solution‐processed high‐performance polymer field‐effect transistors (FETs). Atomic force microscopy and grazing incidence X‐ray scattering analyses indicate that PDVF‐8 and PDVF‐10 films exhibit a similar nodular morphology with the ultrasmall lamellar distances of 16.84 and 18.98 Å, respectively. When compared with the reported polymers with the same alkyl substitutes, this is the smallest d‐spacing value observed to date. This closed lamellar crystallinity facilitates charge carrier transport. Therefore, polymer thin‐film transistors fabricated from as‐spun PDVF‐8 films exhibit a high hole mobility exceeding 1.0 cm2 V?1 s?1 with a current on/off ratio above 106. After annealing treatment at 100 °C in air, the highest hole mobility of PDVF‐8‐based FETs was significantly improved to 1.90 cm2 V?1 s?1, which is among the highest values of the reported FET devices fabricated from polymer thin films based on this mild annealing temperature. In contrast, long alkyl‐substituted PDVF‐10 exhibited a relatively low hole mobility of 1.65 cm2 V?1 s?1 mainly resulting from low molecular weight. This work demonstrated that PDVFs would be promising semiconductors for developing cost‐effective and large‐scale production of flexible organic electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1970–1977  相似文献   

19.
Films resulting from the anodic oxidation of various monosubstituted aromatic amines have been grafted on Pt electrodes in a CH3CN?NaClO4-pyridine medium. An in situ polaromicrotribometric study of changes occurring on the electrode surface during polarization indicates that these deposits have a stable friction coefficient of 1.3fo. Their analysis by multiple-reflection IR spectroscopy and by X-ray photoelectron spectroscopy shows that these films are organic polymers of emeraldine basic structure and that they probably result from the coupling of electrochemically formed NH. radicals with the monomer. These films are homogeneous, very adherent, thermally stable and free of ionic impurities. In the dry state they display a conductivity of 5×10?13 Ω?1 cm?1 which is characteristic of insulators.  相似文献   

20.
A series of new phenothiazine‐based donor–acceptor copolymers, P1 and P2, were synthesized via a Suzuki coupling reaction. The weight‐averaged molecular weights (Mw) of P1 and P2 were found to be 16,700 and 16,100, with polydispersity indices of 1.74 and 1.39, respectively. The UV–visible absorption spectra of the polymer thin films contained three strong absorption bands in the ranges 318–320 nm, 430–436 nm, and 527–568 nm. The absorption peaks at 320 and 430 nm originated mainly from the phenothiazine‐based monomer units, and the longer wavelength absorption band at 527–568 nm was attributed to the increased effective conjugation length of the polymer backbones. Solution‐processed field‐effect transistors fabricated with these polymers exhibited p‐type organic thin film transistor characteristics. The field‐effect mobilities of P1 and P2 were measured to be 1.0 × 10?4 and 7.5 × 10?5 cm2 V?1 s?1, respectively, with on/off ratios in the order of 104 for all polymers. A photovoltaic device in which a P2/PC71BM (1/3) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.70 V, a short‐circuit current (JSC) of 6.79 mA cm(2, a fill factor of 0.39, and a power conversion efficiency of 1.86% under AM 1.5 G (100 mW cm?2) illumination. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号