首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The system of a chiral fermion field coupled to a background gauge field is considered. By taking what we call the particle picture and carefully defining the S-matrix in the Heisenberg picture, we investigate anomalous phenomena in this system. It is shown by explicit calculations that the gauge-field configuration with nonvanishing topological-charge causes anomalous production of particles that is directly responsible for the chiral U(1) anomaly. Unlike the chiral U(1) anomaly, the gauge anomaly, that is, gauge non-invariance of the S-matrix is a problem that arises in the phase of the S-matrix. It is shown that this phase is related to the freedom existing in the quantization method, and that a suitably chosen phase which of course is consistent with the equation of motion can remove the gauge anomaly. Finally, a modified form of path-integral quantization for this system is proposed.  相似文献   

2.
We construct the loop transform in the case of Abelian gauge theories as a unitary operator given by the inductive limit of Fourier transforms on tori. We also show that its range, i.e. the space of kinematical states of the quantum loop representation, is the Hilbert space of square integrable complex valued functions on the group of hoops.  相似文献   

3.
Einstein-Schrödinger (ES) non-symmetric theory has been extended to accommodate the Abelian and non-Abelian gauge theories of dyons in terms of the quaternion-octonion metric realization. Corresponding covariant derivatives for complex, quaternion and octonion spaces in internal gauge groups are shown to describe the consistent field equations and generalized Dirac equation of dyons. It is also shown that quaternion and octonion representations extend the so-called unified theory of gravitation and electromagnetism to the Yang-Mill’s fields leading to two SU(2) gauge theories of internal spaces due to the presence of electric and magnetic charges on dyons.  相似文献   

4.
5.
应用交分累积展开方法系统地研究了(2+1)维和(3+1)维的Z(2)、Z(3)、U(1)阿贝尔格点规范理论在有限温度下的相交.所得结果同已有的严格结果及Svetitsky和Yaff的理论预言相符合.  相似文献   

6.
Gauge theories on a space-time that is deformed by the Moyal–Weyl product are constructed by twisting the coproduct for gauge transformations. This way a deformed Leibniz rule is obtained, which is used to construct gauge invariant quantities. The connection will be enveloping algebra valued in a particular representation of the Lie algebra. This gives rise to additional fields, which couple only weakly via the deformation parameter θ and reduce in the commutative limit to free fields. Consistent field equations that lead to conservation laws are derived and some properties of such theories are discussed.  相似文献   

7.
The transverse symmetry transformations associated with the normal symmetry transformations are proposed to build the transverse constraints on the basic vertices in gauge theories. I show that, while the BRST symmetry in non-Abelian gauge theory QCD (Quantum Chromodynamics) leads to the Slavnov-Taylor identity for the quark-gluon vertex which constrains the longitudinal part of thevertex, the transverse symmetry transformation associated with the BRST symmetry enables to derive the transverse Slavnov-Taylor identity for the quark-gluon vertex, which constrains the transverse part of the quark-gluon vertex from the gauge symmetry of QCD.  相似文献   

8.
Topological and geometric aspects of gauge theories are examined. The geometry of the fiber-bundle formulation of gauge theories is discussed and compared with the formalism of general relativity. The basic role played by the parallel displacement operator of this geometry is examined. With this operator a gauge independent characterization of various topological singularities and non-singular soliton configurations is carried out.  相似文献   

9.
HE  Han-Xin 《理论物理通讯》2009,(8):292-294
The transverse symmetry transformations associated with the normal symmetry transformations are proposed to build the transverse constraints on the basic vertices in gauge theories. I show that, while the BRST symmetry in non-Abelian gauge theory QCD (Quantum Chromodynamics) leads to the Slavnov-Taylor identity for the quark-gluon vertex which constrains the longitudinal part of the vertex, the transverse symmetry transformation associated with the BRST symmetry enables to derive the transverse Slavnov-Taylor identity for the quark-gluon vertex, which constrains the transverse part of the quark-gluon vertex from the gauge symmetry of QCD.  相似文献   

10.
In the context of the Batalin–Vilkovisky formalism, a new observable for the Abelian BF theory is proposed whose vacuum expectation value is related to the Alexander–Conway polynomial. The three-dimensional case is analyzed explicitly, and it is proved to be anomaly free. Moreover, at the second order in perturbation theory, a new formula for the second coefficient of the Alexander–Conway polynomial is obtained. An account on the higher-dimensional generalizations is also given. Received: 2 October 1996 / Accepted: 21 March 1997  相似文献   

11.
Gauge potential plays an important role in exploring exotic phenomena in the single- and many-body quantum systems. In this paper, we propose a scheme to create both new Abelian and non-Abelian gauge potentials by adiabatically controlling the degenerate Dicke model in cavity quantum electrodynamics. It is shown that a non-Abelian gauge potential is achieved only for a single atom, whereas an Abelianizen diagonal gauge potential is realized for the atomic ensemble. More importantly, two interesting quantum phenomena such as the geometric phase and the magnetic monopole induced by our created gauge potentials are also predicted. The possible physical realization is presented in the macroscopic circuit quantum electrodynamics with the Cooper pair boxes, which act as the artificial two-level atoms controlled by the gate voltage and the external magnetic flux.  相似文献   

12.
The studies of superconductivity, dual superconductivity and color superconductivity have been undertaken through the breaking of supersymmetric gauge theories which automatically incorporate the condensation of monopoles and dyons leading to confining and superconducting phases. Constructing the total effective Lagrangian of N=2 SU(2) gauge theory with N f =2 quark multiplets and quark chemical potential at classical and quantum levels, it has been demonstrated that baryon number symmetry is spontaneously broken as a consequence of the SU(2) strong gauge dynamics and the color superconductivity dynamically takes space at the non-SUSY vacuum.  相似文献   

13.
We present the shock-free wave propagation requirements for massless fields.First, we briefly argue how the completely exceptional approach, originallydeveloped to study the characteristics of hyperbolic systems in 1 + 1 dimensions,can be generalized to higher dimensions and used to describe propagation withoutemerging shocks, with characteristic flow remaining parallel along the waves.We then study the resulting requirements for scalar, vector, vector-scalar, andgravity models and characterize physically acceptable actions in each case.  相似文献   

14.
15.
We propose a dictionary between geometry of triangulated 3-manifolds and physics of three-dimensional ${\mathcal{N} = 2}$ gauge theories. Under this duality, standard operations on triangulated 3-manifolds and various invariants thereof (classical as well as quantum) find a natural interpretation in field theory. For example, independence of the SL(2) Chern-Simons partition function on the choice of triangulation translates to a statement that ${S^{3}_{b}}$ partition functions of two mirror 3d ${\mathcal{N} = 2}$ gauge theories are equal. Three-dimensional ${\mathcal{N} = 2}$ field theories associated to 3-manifolds can be thought of as theories that describe boundary conditions and duality walls in four-dimensional ${\mathcal{N} = 2}$ SCFTs, thus making the whole construction functorial with respect to cobordisms and gluing.  相似文献   

16.
We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.  相似文献   

17.
This work studies the relationship between gauge-invariant and non gauge-invariant Abelian vector models. Following a technique introduced by Harada and Tsutsui, we show that the Proca and the chiral Schwinger models may both be viewed as gauge-fixed versions of genuinely gauge-invariant models. This leads to the proposal that any consistent Abelian vector model with no gauge symmetry can be understood as a gauge theory that had its gauge fixed, which establishes an equivalence between gauge-invariant and non gauge-invariant models. Finally, we show that a gauge-invariant version of the chiral Schwinger model, after integrating out the fermionic degrees of freedom, can be identified with the two-dimensional Stueckelberg model without the gauge-fixing term.  相似文献   

18.
In the framework of causal perturbation theory we analyze the gauge structure of a massless self-interacting quantum tensor field. We look at this theory from a pure field theoretical point of view without assuming any geometrical aspect from general relativity. To first order in the perturbation expansion of the S-matrix we derive necessary and sufficient conditions for such a theory to be gauge invariant, by which we mean that the gauge variation of the self-coupling with respect to the gauge charge operator Q is a divergence in the sense of vector analysis. The most general trilinear self-coupling of the graviton field turns out to be the one derived from the Einstein–Hilbert action plus divergences and coboundaries.  相似文献   

19.
The action principle is used to derive, by an entirely algebraic approach, gauge transformations of the full vacuum-to-vacuum transition amplitude (generating functional) from the Coulomb gauge to arbitrary covariant gauges and in turn to the celebrated Fock–Schwinger (FS) gauge for the Abelian (QED) gauge theory without recourse to path integrals or to commutation rules and without making use of delta functionals. The interest in the FS gauge, in particular, is that it leads to Faddeev–Popov ghosts-free non-Abelian gauge theories. This method is expected to be applicable to non-Abelian gauge theories including supersymmetric ones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号